zoukankan      html  css  js  c++  java
  • 深度学习与Pytorch入门实战(五)分类问题以及优化【数字识别实例】

    笔记摘抄

    1. 分类问题

    1.1 二分类

    • (f:x ightarrow p(y=1|x))

      • (p(y=1|x)): 解释成给定x,求y=1的概率,如果概率>0.5,预测为1;否则,预测为0

      • (p_{ heta}(y|x)):给定x,输出预测值的概率

      • (p_{r}(y|x)):给定x,真实分布

    1.2 多分类

    • (f:x ightarrow p(y|x))

      • ([p(y=0|x),p(y=1|x),...,p(y=9|x)])
    • (p(y|x)epsilon [0,1])

    • (sum_{i=0}^{9}p(y=i|x)=1)

    [p_i = frac{e^{a_i}}{sum_{k=1}^{N} e^{a_k}} ]

    2. 交叉熵

    2.1 信息熵

    • 描述一个随机事件的不确定性。

    [H(p)=-sum _{xepsilon X}p(x)logp(x) ]

    • 描述一个分布,熵越高,随机变量的信息越多。
    import torch
    
    a = torch.full([4],1/4.)
    print(-(a*torch.log2(a)).sum())               # tensor(2.)
    
    b = torch.tensor([0.1,0.1,0.1,0.7])
    print(-(b*torch.log2(b)).sum())               # tensor(1.3568)
    
    c = b = torch.tensor([0.001,0.001,0.001,0.999])
    print(-(c*torch.log2(c)).sum())               # tensor(0.0313)
    

    2.2 交叉熵

    • 公式:

    [H(p,q)=-sum _{xepsilon X}p(x)logq(x) ]

    [H(p)=-sum _{xepsilon X}p(x)logp(x) ]

    [D_{KL}(p|q) = H(p,q) - H(p) ]

    • KL散度 = 交叉熵H(p,q) - 信息熵H(p),用 分布q 来模拟 真实分布p 所需的额外信息。

    • p = q,H(p,q) = H(p)

    • 对one-hot Encoding来说,entropy = H(p) = 1log1 = 0

    2.3 二分类问题的交叉熵

    • P(i)指i的真实值,Q(i)指i的预测值。

    (H(p, q) = -sum _{iepsilon cat,dog}P(i)logQ(i))

    (H(p, q) = -P(cat)logQ(cat) - P(dog)logQ(dog))

    (H(p, q) = -sum _{i=1}^{n}y_ilog(p_i)+(1-y_i)log(1-p_i))

    import torch
    from torch.nn import functional as F
    
    x = torch.randn(1,784)
    w = torch.randn(10,784)
    logits = x@w.t()                                      # shape=torch.Size([1,10])
    
    # 方法1:推荐
    # pytorch中cross_entropy已经经过了softma+log+nll_loss,所以这里传入logits
    # 参数: (predict, label)
    print(F.cross_entropy(logits, torch.tensor([3])))     # tensor(77.1405)
    
    # 方法2:容易计算错
    # 如果一定要自己计算softmax+log
    pred = F.softmax(logits,dim=1)                        # shape=torch.Size([1,10])
    pred_log = torch.log(pred)
    
    print(F.nll_loss(pred_log, torch.tensor([3])))        # tensor(77.1405)
    

    3. 多分类实战

    • 识别手写数据集
    import  torch
    import  torch.nn as nn
    import  torch.nn.functional as F
    import  torch.optim as optim
    from    torchvision import datasets, transforms
    
    #超参数
    batch_size=200
    learning_rate=0.01
    epochs=10
    
    #获取训练集
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,          #train=True则得到的是训练集
                       transform=transforms.Compose([                 #transform进行数据预处理
                           transforms.ToTensor(),                     #转成Tensor类型的数据
                           transforms.Normalize((0.1307,), (0.3081,)) #进行数据标准化(减去均值除以方差)
                       ])),
        batch_size=batch_size, shuffle=True)                          #按batch_size分出一个batch维度在最前面,shuffle=True打乱顺序
    
    
    
    #获取测试集
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=batch_size, shuffle=True)
    
    #设定参数w和b
    w1, b1 = torch.randn(200, 784, requires_grad=True),
             torch.zeros(200, requires_grad=True)             #w1(out,in)
    w2, b2 = torch.randn(200, 200, requires_grad=True),
             torch.zeros(200, requires_grad=True)
    w3, b3 = torch.randn(10, 200, requires_grad=True),
             torch.zeros(10, requires_grad=True)
    
    torch.nn.init.kaiming_normal_(w1)
    torch.nn.init.kaiming_normal_(w2)
    torch.nn.init.kaiming_normal_(w3)
    
    
    def forward(x):
        x = x@w1.t() + b1
        x = F.relu(x)
        x = x@w2.t() + b2
        x = F.relu(x)
        x = x@w3.t() + b3
        x = F.relu(x)
        return x
    
    
    #定义sgd优化器,指明优化参数、学习率
    optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
    criteon = nn.CrossEntropyLoss()
    
    for epoch in range(epochs):
    
        for batch_idx, (data, target) in enumerate(train_loader):
            data = data.view(-1, 28*28)          #将二维的图片数据摊平[样本数,784]
    
            logits = forward(data)               #前向传播
            loss = criteon(logits, target)       #nn.CrossEntropyLoss()自带Softmax
    
            optimizer.zero_grad()                #梯度信息清空
            loss.backward()                      #反向传播获取梯度
            optimizer.step()                     #优化器更新
    
            if batch_idx % 100 == 0:             #每100个batch输出一次信息
                print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.item()))
    
    
        test_loss = 0
        correct = 0                                         #correct记录正确分类的样本数
        for data, target in test_loader:
            data = data.view(-1, 28 * 28)
            logits = forward(data)
            test_loss += criteon(logits, target).item()     #其实就是criteon(logits, target)的值,标量
    
            pred = logits.data.max(dim=1)[1]                #也可以写成pred=logits.argmax(dim=1)
            correct += pred.eq(target.data).sum()
    
        test_loss /= len(test_loader.dataset)
        print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
    
    view result
    Train Epoch: 0 [0/60000 (0%)]	Loss: 2.551489
    Train Epoch: 0 [20000/60000 (33%)]	Loss: 0.937205
    Train Epoch: 0 [40000/60000 (67%)]	Loss: 0.664578
    
    Test set: Average loss: 0.0030, Accuracy: 8060/10000 (81%)
    
    Train Epoch: 1 [0/60000 (0%)]	Loss: 0.594552
    Train Epoch: 1 [20000/60000 (33%)]	Loss: 0.534821
    Train Epoch: 1 [40000/60000 (67%)]	Loss: 0.676503
    
    Test set: Average loss: 0.0026, Accuracy: 8277/10000 (83%)
    
    Train Epoch: 2 [0/60000 (0%)]	Loss: 0.393263
    Train Epoch: 2 [20000/60000 (33%)]	Loss: 0.424480
    Train Epoch: 2 [40000/60000 (67%)]	Loss: 0.560588
    
    Test set: Average loss: 0.0024, Accuracy: 8359/10000 (84%)
    
    Train Epoch: 3 [0/60000 (0%)]	Loss: 0.559309
    Train Epoch: 3 [20000/60000 (33%)]	Loss: 0.547236
    Train Epoch: 3 [40000/60000 (67%)]	Loss: 0.537494
    
    Test set: Average loss: 0.0023, Accuracy: 8423/10000 (84%)
    
    Train Epoch: 4 [0/60000 (0%)]	Loss: 0.549808
    Train Epoch: 4 [20000/60000 (33%)]	Loss: 0.405319
    Train Epoch: 4 [40000/60000 (67%)]	Loss: 0.368419
    
    Test set: Average loss: 0.0022, Accuracy: 8477/10000 (85%)
    
    Train Epoch: 5 [0/60000 (0%)]	Loss: 0.371384
    Train Epoch: 5 [20000/60000 (33%)]	Loss: 0.409493
    Train Epoch: 5 [40000/60000 (67%)]	Loss: 0.354021
    
    Test set: Average loss: 0.0021, Accuracy: 8523/10000 (85%)
    
    Train Epoch: 6 [0/60000 (0%)]	Loss: 0.448938
    Train Epoch: 6 [20000/60000 (33%)]	Loss: 0.439384
    Train Epoch: 6 [40000/60000 (67%)]	Loss: 0.476088
    
    Test set: Average loss: 0.0020, Accuracy: 8548/10000 (85%)
    
    Train Epoch: 7 [0/60000 (0%)]	Loss: 0.401981
    Train Epoch: 7 [20000/60000 (33%)]	Loss: 0.405808
    Train Epoch: 7 [40000/60000 (67%)]	Loss: 0.492355
    
    Test set: Average loss: 0.0020, Accuracy: 8575/10000 (86%)
    
    Train Epoch: 8 [0/60000 (0%)]	Loss: 0.385034
    Train Epoch: 8 [20000/60000 (33%)]	Loss: 0.367822
    Train Epoch: 8 [40000/60000 (67%)]	Loss: 0.333447
    
    Test set: Average loss: 0.0020, Accuracy: 8593/10000 (86%)
    
    Train Epoch: 9 [0/60000 (0%)]	Loss: 0.349438
    Train Epoch: 9 [20000/60000 (33%)]	Loss: 0.390028
    Train Epoch: 9 [40000/60000 (67%)]	Loss: 0.390438
    
    Test set: Average loss: 0.0019, Accuracy: 8604/10000 (86%)
    
  • 相关阅读:
    LG P4161 [SCOI2009]游戏/LG P6280 [USACO20OPEN]Exercise G
    BZOJ3473 字符串
    BZOJ4545 DQS的trie
    LG P5212 SubString
    batj ,tmd用的都是什么技术。
    java社招面试题目
    python,go,java 的发展
    互联网 后端技术必备知识
    java语言三件套
    java spring全家桶
  • 原文地址:https://www.cnblogs.com/douzujun/p/13311450.html
Copyright © 2011-2022 走看看