此文转自两篇博文 有修改
序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法。SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现。
1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的SVM训练方法必须使用复杂的方法,并需要昂贵的第三方二次规划工具。而SMO算法较好地避免了这一问题。
前面最后留下来一个对偶函数最后的优化问题,原式为:
-----------------这个是由拉格朗日方法 然后求偏导 列式带入核函数得到的目标函数
SMO就是要解这个凸二次规划问题,这里的C是个很重要的参数,它从本质上说是用来折中经验风险和置信风险的,C越大,置信风险越大,经验风险越小;并且所有的因子都被限制在了以C为边长的大盒子里。
算法详述
(1)、 KKT条件
SMO是以C-SVC的KKT条件为基础进行后续操作的,这个KKT条件是:
其中
上述条件其实就是KT互补条件,SVM学习——软间隔优化一文,有如下结论:
从上面式子可以得到的信息是:当时,松弛变量,此时有:,对应样本点就是误分点;当时,松弛变量为零,此时有,对应样本点就是内部点,即分类正确而又远离最大间隔分类超平面的那些样本点;而时,松弛变量为零,有,对应样本点就是支持向量。
(2)、凸优化问题停止条件
对于凸优化问题,在实现时总需要适当的停止条件来结束优化过程,停止条件可以是:
1、监视目标函数的增长率,在它低于某个容忍值时停止训练,这个条件是最直白和简单的,但是效果不好;
2、监视原问题的KKT条件,对于凸优化来说它们是收敛的充要条件,但是由于KKT条件本身是比较苛刻的,所以也需要设定一个容忍值,即所有样本在容忍值范围内满足KKT条件则认为训练可以结束;
3、监视可行间隙,它是原始目标函数值和对偶目标函数值的间隙,对于凸二次优化来说这个间隙是零,以一阶范数软间隔为例:
原始目标函数与对偶目标函数的差为:
定义比率:
,可以利用这个比率达到某个容忍值作为停止条件。
(3)、SMO思想
沿袭分解思想,固定“Chunking工作集”的大小为2,每次迭代只优化两个点的最小子集且可直接获得解析解,算法流程:
(4)、仅含两个Langrange乘子解析解
为了描述方便定义如下符号:
于是目标函数就变成了:
注意第一个约束条件:,可以将看作常数,有(为常数,我们不关心它的值),等式两边同时乘以,得到(为常数,其值为,我们不关心它,)。将用上式替换则得到一个只含有变量的求极值问题:
这下问题就简单了,对求偏导数得到:
将、带入上式有:
带入、,用,表示误差项(可以想象,即使分类正确,的值也可能很大)、(是原始空间向特征空间的映射),这里可以看成是一个度量两个样本相似性的距离,换句话说,一旦选择核函数则意味着你已经定义了输入空间中元素的相似性。
最后得到迭代式:
注意第二个约束条件——那个强大的盒子:,这意味着也必须落入这个盒子中,综合考虑两个约束条件,下图更直观:
和异号的情形
和同号的情形
可以看到两个乘子既要位于边长为C的盒子里又要在相应直线上,于是对于的界来说,有如下情况:
整理得下式:
又因为,,消去后得到:
(5).综上可总结出SMO的算法框架
SMO算法是一个迭代优化算法。在每一个迭代步骤中,算法首先选取两个待更新的向量,此后分别计算它们的误差项,并根据上述结果计算出和。最后再根据SVM的定义计算出偏移量。对于误差项而言,可以根据、和b的增量进行调整,而无需每次重新计算。具体的算法如下:
1. 随机数初始化向量权重,并计算偏移b。(这一步初始化向量权重只要使符合上述的约束条件即可,原博文的程序就是range函数)
2.初始化误差项,其中
3.选取两个向量作为需要调整的点(例如第一次下标为1,2两点,第二次下标3,4...........),然后
令其中(是原始空间向特征空间的映射),
4.if >H 令=H if <L 令=L (L,H前面已给出)
5.令
6.利用更新的和修改和b的值
7.如果达到终止条件,则算法停止,否则转向3
算法补充说明:
优化向量选择方法
可以采用启发式的方法选择每次迭代中需要优化的向量。第一个向量可以选取不满足支持向量机KKT条件的向量,亦即不满足
- 即:
-
其中
的向量。而第二个向量可以选择使得最大的向量。
终止条件
SMO算法的终止条件可以为KKT条件对所有向量均满足,或者目标函数增长率小于某个阈值,即
-
(根据前面的凸优化问题停止条件所说,此效果可能不佳,可选择其他方法,见(2))
-
---------------------------------以下内容是有关可行间隙方法,乘子优化,SMO加速问题,是深化的内容------------------------------------------------
(6)、启发式的选择方法
根据选择的停止条件可以确定怎么样选择点能对算法收敛贡献最大,例如使用监视可行间隙的方法,一个最直白的选择就是首先优化那些最违反KKT条件的点,所谓违反KKT条件是指:
其中KKT条件
由前面的停止条件3可知,对可行间隙贡献最大的点是那些
其中,
取值大的点,这些点导致可行间隙变大,因此应该首先优化它们(原因见原博文:http://www.cnblogs.com/vivounicorn/archive/2011/06/01/2067496.html)
SMO的启发式选择有两个策略:
启发式选择1:
最外层循环,首先,在所有样本中选择违反KKT条件的一个乘子作为最外层循环,用“启发式选择2”选择另外一个乘子并进行这两个乘子的优化,接着,从所有非边界样本中选择违反KKT条件的一个乘子作为最外层循环,用“启发式选择2”选择另外一个乘子并进行这两个乘子的优化(之所以选择非边界样本是为了提高找到违反KKT条件的点的机会),最后,如果上述非边界样本中没有违反KKT条件的样本,则再从整个样本中去找,直到所有样本中没有需要改变的乘子或者满足其它停止条件为止。
启发式选择2:
内层循环的选择标准可以从下式看出:
要加快第二个乘子的迭代速度,就要使最大,而在上没什么文章可做,于是只能使最大。
确定第二个乘子方法:
1、首先在非界乘子中寻找使得最大的样本;
2、如果1中没找到则从随机位置查找非界乘子样本;
3、如果2中也没找到,则从随机位置查找整个样本(包含界上和非界乘子)。
(7)、关于两乘子优化的说明
由式子
可知:
于是对于这个单变量二次函数而言,如果其二阶导数,则二次函数开口向下,可以用上述迭代的方法更新乘子,如果,则目标函数只能在边界上取得极值(此时二次函数开口向上),换句话说,SMO要能处理取任何值的情况,于是在时有以下式子:
1、时:
2、时:
3、
分别将乘子带入得到两种情况下的目标函数值: 和。显然,哪种情况下目标函数值最大,则乘子就往哪儿移动,如果目标函数的差在某个指定精度范围内,说明优化没有进展。
另外发现,每一步迭代都需要计算输出进而得到,于是还要更新阈值,使得新的乘子、满足KKT条件,考虑、至少有一个在界内,则需要满足,于是的迭代可以这样得到:
1、设在界内,则:
又因为:
于是有:
等式两边同乘后移项得:
;
2、设在界内,则:
;
3、设、都在界内,则:情况1和情况2的值相等,任取一个;
4、设、都不在界内,则:取值为情况1和情况2之间的任意值。
(8)、提高SMO的速度
从实现上来说,对于标准的SMO能提高速度的地方有:
1、能用缓存的地方尽量用,例如,缓存核矩阵,减少重复计算,但是增加了空间复杂度;
2、如果SVM的核为线性核时候,可直接更新,毕竟每次计算的代价较高,于是可以利用旧的乘子信息来更新,具体如下:
,应用到这个性质的例子可以参见SVM学习——Coordinate Desent Method。
3、关注可以并行的点,用并行方法来改进,例如可以使用MPI,将样本分为若干份,在查找最大的乘子时可以现在各个节点先找到局部最大点,然后再从中找到全局最大点;又如停止条件是监视对偶间隙,那么可以考虑在每个节点上计算出局部可行间隙,最后在master节点上将局部可行间隙累加得到全局可行间隙。