Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.
For example,
Given n = 3
,
You should return the following matrix:
[ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
思路:
我是直接套用了Spiral Matrix 的代码
class Solution { public: vector<vector<int> > generateMatrix(int n) { vector<vector<int>> ans(n, vector<int>(n,0)); int num = 1; for(int i = 0; i < (n + 1) / 2; i++) { //行 -----> for(int j = i; j < n - i; j++) ans[i][j] = num++; //列 向下 for(int j = i + 1; j < n - i; j++) ans[j][n - 1 - i] = num++; //行 <----------- if(n - i - 1 <= i) //列号 一定要比向左时的列号小 防止重复 break; for(int j = n - i - 2; j >= i; j--) ans[n - i - 1][j] = num++; //列 向上 if(i >= n - 1 - i) //行号 一定要比向下时的行号大 防止重复 break; for(int j = n - i - 2; j >= i + 1; j--) ans[j][i] = num++; } return ans; } };
另一种写法的:
class Solution { public: vector<vector<int> > generateMatrix(int n) { vector<vector<int> > ret( n, vector<int>(n) ); int k = 1, i = 0; while( k <= n * n ) { int j = i; // four steps while( j < n - i ) // 1. horizonal, left to right ret[i][j++] = k++; j = i + 1; while( j < n - i ) // 2. vertical, top to bottom ret[j++][n-i-1] = k++; j = n - i - 2; while( j > i ) // 3. horizonal, right to left ret[n-i-1][j--] = k++; j = n - i - 1; while( j > i ) // 4. vertical, bottom to top ret[j--][i] = k++; i++; // next loop } return ret; } };