zoukankan      html  css  js  c++  java
  • 2016"百度之星"

    All X[HDU5690]

      找循环节,注意可能是混循环。

    #include <stdio.h>
    #include <string.h>
    bool f[10005];
    int a[10005], l, r;
    int main() {
        int n, x, k, c, t;
        long long m;
        scanf("%d", &n);
        for (int q = 0; q < n; q++) {
            scanf("%d%lld%d%d", &x, &m, &k, &c);
            memset(f, false, sizeof(f));
            l = r = 0;
            a[r++] = x % k;
            f[a[0]] = true;
            for (int i = 0;; i++) {
                t = (a[r - 1] * 10 + x) % k;
                if (f[t]) {
                    for (int j = 0; j < r; j++) {
                        if (a[j] == t) {
                            l = j;
                            break;
                        }
                    }
                    break;
                }
                f[t] = true;
                a[r++] = t;
            }
            m -= l;
            printf("Case #%d:
    %s
    ", q + 1, c == a[m % (r - l) == 0 ? r - 1 : l + (int)(m % (r - l)) - 1] ? "Yes" : "No");
        }
        return 0;
    }
    View Code

     Sitting in Line[HDU5691]

      状态压缩,状态i表示整数的选取状态,其二进制形式的10分别表示对应的数字是否选取。dp[i][j]表示在状态i下最后放置的数字是第j个数字能得到的最大值。

    #include<bitset>
    #include<map>
    #include<vector>
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<cmath>
    #include<stack>
    #include<queue>
    #include<set>
    #define inf 0x3f3f3f3f
    #define mem(a,x) memset(a,x,sizeof(a))
    #define F first
    #define S second
    using namespace std;
    
    typedef long long ll;
    typedef pair<int, int> pii;
    
    inline int in() {
        int res = 0;
        char c;
        int f = 1;
        while ((c = getchar()) < '0' || c > '9')if (c == '-') {
                f = -1;
            }
        while (c >= '0' && c <= '9') {
            res = res * 10 + c - '0', c = getchar();
        }
        return res * f;
    }
    const int N = 100010, MOD = 1e9 + 7;
    int a[16];
    int dp[1 << 16][16], must[16];
    int one[1 << 16];
    
    int main() {
        for (int i = 0; i < 1 << 16; i++) {
            for (int j = i; j; j >>= 1) {
                one[i] += j & 1;
            }
        }
        int T = in(), ca = 1;
        while (T--) {
            int n = in();
            mem(must, -1);
            int x, y;
            for (int i = 0; i < n; i++) {
                scanf("%d%d", &x, &y);
                a[i] = x;
                if (y != -1) {
                    must[y] = i;    //y位置必须是ai值
                }
            }
            int all = 1 << n;
            for (int i = 0; i < all; i++) {
                for (int j = 0; j < n; j++) {
                    dp[i][j] = -inf;
                }
            }
            //0没法转移, 特殊处理
            if (must[0] == -1) {
                for (int i = 0; i < n; i++) {
                    dp[1 << i][i] = 0;
                }
            } else {
                dp[1 << must[0]][must[0]] = 0;
            }
            for (int i = 1; i < all; i++) {
                int num = one[i];
                if (must[num] == -1) {
                    for (int j = 0; j < n; j++) { //枚举结束位置
                        if (i & 1 << j && dp[i][j] != -inf) {
                            for (int k = 0; k < n; k++) { //枚举下一次加的值
                                if (!(i & 1 << k)) {
                                    dp[i | 1 << k][k] = max(dp[i | 1 << k][k], dp[i][j] + a[k] * a[j]);
                                }
                            }
                        }
                    }
                } else {
                    int k = must[num]; //下一个位置必须是a[k]
                    if (i & 1 << k) {
                        continue;    //如果a[k]已经使用, 不更新
                    }
                    for (int j = 0; j < n; j++) {
                        if (i & 1 << j && dp[i][j] != -inf) {
                            dp[i | 1 << k][k] = max(dp[i | 1 << k][k], dp[i][j] + a[j] * a[k]);
                        }
                    }
                }
            }
            int ans = -inf;
            for (int j = 0; j < n; j++) {
                ans = max(ans, dp[all - 1][j]);
            }
            printf("Case #%d:
    %d
    ", ca++, ans);
        }
        return 0;
    }
    View Code

    Snacks[HDU5692]

      首先先弄成以0为根的一棵树,每个节点的权值为根节点到当前节点的价值之和。查询某个节点时,其价值之和的最大值应为该节点对应的子树中最大的权值。更新某个节点的权值时,则该节点对应的子树上每一个节点都会产生同样的变化。因此,可以通过dfs产生树的先根遍历,然后用线段树来进行更新和查询操作。

      错的原因:线段树写错了,lazy处理的不对。

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <stdio.h>
    #include <string.h>
    template <class T> class SegmentTree {
    public:
        T dat, lazy;
        int leftBorder, rightBorder, mid;
        SegmentTree * leftSon, * rightSon;
        T(* lazyfunc)(T, T);
        T(* mergefunc)(T, T);
        SegmentTree() {
            leftBorder = rightBorder = -1;
            leftSon = rightSon = NULL;
        }
        void pushdown();
        void pushup();
        void Build(T *, int, int, T(*)(T, T), T(*)(T, T));
        void Modify(int, int, T);
        T Query(int, int);
        void Free();
    };
    template<class T> void SegmentTree<T>::pushdown() {
        if (lazy && leftBorder != rightBorder) {
            leftSon->dat = lazyfunc(leftSon->dat, lazy);
            rightSon->dat = lazyfunc(rightSon->dat, lazy);
            leftSon->lazy = lazyfunc(leftSon->lazy, lazy);
            rightSon->lazy = lazyfunc(rightSon->lazy, lazy);
        }
        lazy = (T)0;
    }
    template<class T> void SegmentTree<T>::pushup() {
        dat = mergefunc(leftSon->dat, rightSon->dat);
    }
    template<class T> void SegmentTree<T>::Build(T * S, int l, int r, T(* lfunc)(T, T), T(* mfunc)(T, T)) {
        if (l > r) {
            return;
        }
        lazy = (T)0;
        leftBorder = l;
        rightBorder = r;
        mid = (leftBorder + rightBorder) >> 1;
        lazyfunc = lfunc;
        mergefunc = mfunc;
        if (l == r) {
            dat = S[l];
            return;
        }
        leftSon = new SegmentTree;
        leftSon->Build(S, l, mid, lfunc, mfunc);
        rightSon = new SegmentTree;
        rightSon->Build(S, mid + 1, r, lfunc, mfunc);
        pushup();
    }
    template<class T> void SegmentTree<T>::Modify(int l, int r, T NewDat) {
        if (l > r || l < leftBorder || rightBorder < r) {
            return;
        }
        if (leftBorder == l && rightBorder == r) {
            dat = lazyfunc(dat, NewDat);
            lazy = lazyfunc(lazy, NewDat);
            return;
        }
        pushdown();
        if (r <= mid) {
            leftSon->Modify(l, r, NewDat);
        } else if (mid < l) {
            rightSon->Modify(l, r, NewDat);
        } else {
            leftSon->Modify(l, mid, NewDat);
            rightSon->Modify(mid + 1, r, NewDat);
        }
        pushup();
    }
    template<class T> T SegmentTree<T>::Query(int l, int r) {
        if (l > r || l < leftBorder || rightBorder < r) {
            return dat;
        }
        pushdown();
        if (l == leftBorder && r == rightBorder) {
            return dat;
        }
        if (r <= mid) {
            return leftSon->Query(l, r);
        } else if (mid < l) {
            return rightSon->Query(l, r);
        } else {
            return mergefunc(leftSon->Query(l, mid), rightSon->Query(mid + 1, r));
        }
    }
    template<class T> void SegmentTree<T>::Free() {
        if (leftSon != NULL) {
            leftSon->Free();
        }
        if (rightSon != NULL) {
            rightSon->Free();
        }
        delete leftSon;
        delete rightSon;
    }
    SegmentTree<long long> st;
    long long a[100005], b[100005], w[100005];
    int M, N;
    int head[100005], l[100005], r[100005];
    struct EDGE {
        int v, nex;
    } edge[200005];
    void addEdge(int a, int b) {
        edge[M].v = b;
        edge[M].nex = head[a];
        head[a] = M++;
        edge[M].v = a;
        edge[M].nex = head[b];
        head[b] = M++;
    }
    long long lazyfunc(long long x, long long y) {
        return x + y;
    }
    long long mergefunc(long long x, long long y) {
        return x > y ? x : y;
    }
    void dfs1(int f, int x) {
        int e = head[x];
        while (e != -1) {
            int v = edge[e].v;
            if (f != v) {
                a[v] = a[x] + w[v];
                dfs1(x, v);
            }
            e = edge[e].nex;
        }
    }
    void dfs2(int f, int x) {
        l[x] = N;
        b[N++] = a[x];
        int e = head[x];
        while (e != -1) {
            int v = edge[e].v;
            if (f != v) {
                dfs2(x, v);
            }
            e = edge[e].nex;
        }
        r[x] = N - 1;
    }
    int main() {
        int n, m, t, o, u, v;
        scanf("%d", &t);
        for (int q = 1; q <= t; q++) {
            scanf("%d%d", &n, &m);
            M = 0;
            memset(head, -1, sizeof(head));
            for (int i = 1; i < n; i++) {
                scanf("%d%d", &u, &v);
                addEdge(u, v);
            }
            for (int i = 0; i < n; i++) {
                scanf("%lld", &w[i]);
            }
            a[0] = w[0];
            dfs1(-1, 0);
            N = 0;
            dfs2(-1, 0);
            st.Free();
            st.Build(b, 0, N - 1, lazyfunc, mergefunc);
            printf("Case #%d:
    ", q);
            for (int i = 0; i < m; i++) {
                scanf("%d", &o);
                if (o == 0) {
                    scanf("%d%d", &u, &v);
                    st.Modify(l[u], r[u], v - w[u]);
                    w[u] = v;
                } else {
                    scanf("%d", &u);
                    printf("%lld
    ", st.Query(l[u], r[u]));
                }
            }
        }
        return 0;
    }
    View Code

    D game[HDU5693]

      首先只用考虑长度为2和3的等差数列就可以了,因为更长的等差数列都可以拆成几个2和3的小等差数列。

      用f[i][j]表示从i到j的字段能否全部消除,能全部消除的情况总共有3种模式

      [#####][#####]

      O[#####]O

      O[#####]O[#####]O

      其他都可以用这三种形式表示出来。

      dp[i]表示从1到i最多消去的个数。dp[i] = max(dp[i],dp[j - 1] + i - j + 1)

      错的原因:①在转移前,dp[i]的值应先设为dp[i-1],因为第i个数字可能并不在任何一个等差数列中。②二维数组f[i][j]写成了f[i,j],编译器不会报错,因为i,j也是个表达式,二维数组用一维的下标访问也没有问题,但算出来的结果肯定不对了。③使用位运算的时候要注意加括号,比如x&1==0,如果x<0,结果就会出错。感觉原因是这样的:-x&1==0,程序先判断了(1==0)得到一个false,再由这个false去&前面的-x。所以应该写成(x&1)==0。

    #include <stdio.h>
    #include <string.h>
    #include <map>
    std::map<long long, bool> mp;
    long long a[305], d;
    int dp[305];
    bool f[305][305];
    int main() {
        int n, m, t;
        scanf("%d", &t);
        while (t--) {
            scanf("%d%d", &n, &m);
            for (int i = 1; i <= n; i++) {
                scanf("%lld", &a[i]);
            }
            mp.clear();
            for (int i = 1; i <= m; i++) {
                scanf("%lld", &d);
                mp[d] = true;
            }
            memset(f, false, sizeof(f));
            for (int i = 1; i <= n; i++) {
                f[i][i - 1] = true;
            }
            for (int j = 2; j <= n; j++) {
                for (int i = 1; i + j - 1 <= n; i++) {
                    for (int k = i + 1; k < i + j - 1; k++) {
                        if (f[i][k] && f[k + 1][i + j - 1]) {
                            f[i][i + j - 1] = true;
                        }
                    }
                    if (mp[a[i + j - 1] - a[i]] && f[i + 1][i + j - 2]) {
                        f[i][i + j - 1] = true;
                    }
                    if (((a[i + j - 1] - a[i]) & 1) == 0 && mp[(a[i + j - 1] - a[i]) >> 1]) {
                        for (int k = i + 1; k < i + j - 1; k++) {
                            if ((a[k] << 1) == (a[i] + a[i + j - 1]) && f[i + 1][k - 1] && f[k + 1][i + j - 2]) {
                                f[i][i + j - 1] = true;
                            }
                        }
                    }
                }
            }
            memset(dp, 0, sizeof(dp));
            for (int i = 2; i <= n; i++) {
                dp[i] = dp[i - 1];
                for (int j = 1; j < i; j++) {
                    if (f[j][i] && dp[j - 1] + i - j + 1 > dp[i]) {
                        dp[i] = dp[j - 1] + i - j + 1;
                    }
                }
            }
            printf("%d
    ", dp[n]);
        }
        return 0;
    }
    View Code

    BD String[HDU5694]

      解法肯定是b(r)-b(l-1),只要能写出来b(x)函数就行。观察他的字符串构造,中间有一个b,右边的串是左边翻转加回文构成的,回文不改变bd的数量,翻转使bd数量交换,所以左右两边b和d的数量加起来是相等的,中间多一个b。另外S(n)的长度为2*S(n-1)+1=2^n-1。所以当x=2^n-1时,直接得到b(x)=(x/2)+1。对于一般情况,找到x长度介于S(n)和S(n+1)之间的n。只要用S(n+1)里的b的数量减去从第x+1位到S(n+1)末尾中的b的数量即可,而这一部分与字符串的开头同样长度的部分的关系是db数量交换,可以递归求解。

    #include <stdio.h>
    #include <string.h>
    long long b(long long x) {
        if (x == 0) {
            return 0;
        }
        long long l = 1;
        while (l < x) {
            l = l * 2 + 1;
        }
        if (l == x) {
            return l / 2 + 1;
        }
        return (l / 2 + 1) - (l - x - b(l - x));
    }
    int main() {
        int t;
        long long l, r;
        scanf("%d", &t);
        while (t--) {
            scanf("%lld%lld", &l, &r);
            printf("%lld
    ", b(r) - b(l - 1));
        }
        return 0;
    }
    View Code

    Gym Class[HDU5695]

      拓扑排序,每次输出可行的同学中id最高的那个。

      错的原因:每个同学要等到所有嫌弃他的同学都过了之后才能变成可行的。

    #include <stdio.h>
    #include <string.h>
    #include <queue>
    std::priority_queue<int> q;
    int f[100005];
    int M;
    int head[100005];
    struct EDGE {
        int v, nex;
    } edge[100005];
    void addEdge(int a, int b) {
        edge[M].v = b;
        edge[M].nex = head[a];
        head[a] = M++;
    }
    int main() {
        int n, m, t, a, b;
        scanf("%d", &t);
        while (t--) {
            scanf("%d%d", &n, &m);
            memset(f, 0, sizeof(f));
            M = 0;
            memset(head, -1, sizeof(head));
            for (int i = 1; i <= m; i++) {
                scanf("%d%d", &a, &b);
                addEdge(a, b);
                f[b]++;
            }
            while (!q.empty()) {
                q.pop();
            }
            for (int i = 1; i <= n; i++) {
                if (f[i] == 0) {
                    q.push(i);
                }
            }
            long long ans = 0;
            int min = 0x7FFFFFFF;
            while (!q.empty()) {
                int x = q.top();
                q.pop();
                if (x < min) {
                    min = x;
                }
                ans += min;
                for (int e = head[x]; e != -1; e = edge[e].nex) {
                    f[edge[e].v]--;
                    if (f[edge[e].v] == 0) {
                        q.push(edge[e].v);
                    }
                }
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    LVS DR模式的简单应用
    Linux新加硬盘如何识别 分区 持续挂载
    13周作业
    12周作业
    2次月考
    10周作业
    9周作业
    8周作业
    7周作业
    6周作业
  • 原文地址:https://www.cnblogs.com/dramstadt/p/6934772.html
Copyright © 2011-2022 走看看