zoukankan      html  css  js  c++  java
  • Surround the Trees[HDU1392]

    Surround the Trees

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 11811    Accepted Submission(s): 4577


    Problem Description

    There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him? 
    The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.



    There are no more than 100 trees.

     

     

    Input

    The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.

    Zero at line for number of trees terminates the input for your program.

     

     

    Output

    The minimal length of the rope. The precision should be 10^-2.

     

     

    Sample Input

    9 12 7 24 9 30 5 41 9 80 7 50 87 22 9 45 1 50 7 0

     

     

    Sample Output

    243.06

     

    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <math.h>
    #include <algorithm>
    //#include <algorithm>
    namespace Geometry {
        class point {
        public:
            double x, y;
            point() {}
            point(const point &p): x(p.x), y(p.y) {}
            point(double a, double b): x(a), y(b) {}
            point operator + (const point & p)const {
                point ret;
                ret.x = x + p.x, ret.y = y + p.y;
                return ret;
            }
            point operator - (const point & p)const {
                point ret;
                ret.x = x - p.x, ret.y = y - p.y;
                return ret;
            }
            //dot product
            double operator * (const point & p)const {
                return x * p.x + y * p.y;
            }
            //cross product
            double operator ^ (const point & p)const {
                return x * p.y - p.x * y;
            }
            bool operator < (const point & p)const {
                if (fabs(x - p.x) < 1e-8) {
                    return y < p.y;
                }
                return x < p.x;
            }
            double mold() {
                return sqrt(x * x + y * y);
            }
        };
        double cp(point a, point b, point o) {
            return (a - o) ^ (b - o);
        }
        class line {
        public:
            point A, B;
            line() {}
            line(point a, point b): A(a), B(b) {}
            bool IsLineCrossed(const line &l)const {
                point v1, v2;
                double c1, c2;
                v1 = B - A, v2 = l.A - A;
                c1 = v1 ^ v2;
                v2 = l.B - A;
                c2 = v1 ^ v2;
                if (c1 * c2 >= 0) {
                    return false;
                }
                v1 = l.B - l.A, v2 = A - l.A;
                c1 = v1 ^ v2;
                v2 = B - l.A;
                c2 = v1 ^ v2;
                if (c1 * c2 >= 0) {
                    return false;
                }
                return true;
            }
        };
        int Graham(point * p, point * s, int n) {
            std::sort(p, p + n);
            int top, m;
            s[0] = p[0];
            s[1] = p[1];
            top = 1;
            for (int i = 2; i < n; i++) { //从前往后扫
                while (top > 0 && cp(p[i], s[top], s[top - 1]) >= 0) {
                    top--;
                }
                s[++top] = p[i];
            }
            m = top;
            s[++top] = p[n - 2];
            for (int i = n - 3; i >= 0; i--) { //从后往前扫
                while (top > m && cp(p[i], s[top], s[top - 1]) >= 0) {
                    top--;
                }
                s[++top] = p[i];
            }
            return top;
        }
    }
    //using namespace Geometry;
    using namespace Geometry;
    point p[200], s[200];
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("input.txt", "r", stdin);
    #endif
        int n;
        while (scanf("%d", &n) != EOF) {
            if (n == 0) {
                break;
            }
            for (int i = 0; i < n; i++) {
                scanf("%lf%lf", &p[i].x, &p[i].y);
            }
            int cnt = 0;
            for (int i = 1; i < n; i++) //去掉重复的点
                if (fabs(p[i].x - p[cnt].x) > 1e-8 || fabs(p[i].y - p[cnt].y) > 1e-8) {
                    p[++cnt] = p[i];
                }
            cnt++;
            if (cnt == 1) {
                printf("0.00
    ");
                continue;
            } else if (cnt == 2) {
                printf("%.2lf
    ", (p[1] - p[0]).mold());
                continue;
            }
            int top = Graham(p, s, cnt);
            double ans = 0;
            for (int i = 0; i < top - 1; i++) {
                ans += (s[i + 1] - s[i]).mold();
            }
            ans += (s[top - 1] - s[0]).mold();
            printf("%.2lf
    ", ans);
        }
        return 0;
    }
    View Code

     

     

  • 相关阅读:
    访问者模式
    解释器模式
    享元模式
    职责链模式
    中介者模式
    单例模式
    桥接模式
    命令模式
    迭代器模式
    Python 学习笔记15 类
  • 原文地址:https://www.cnblogs.com/dramstadt/p/7380789.html
Copyright © 2011-2022 走看看