zoukankan      html  css  js  c++  java
  • 协程函数

    协程函数是通过yield实现,通过单线程就可以实现并发的效果

    直接上代码

    import time
    
    """
    传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。
    如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高。
    """
    # 注意到consumer函数是一个generator(生成器):
    # 任何包含yield关键字的函数都会自动成为生成器(generator)对象
    
    def consumer():
        r = ''
        while True:
            # 3、consumer通过yield拿到消息,处理,又通过yield把结果传回;
            #    yield指令具有return关键字的作用。然后函数的堆栈会自动冻结(freeze)在这一行。
            #    当函数调用者的下一次利用next()或generator.send()或for-in来再次调用该函数时,
            #    就会从yield代码的下一行开始,继续执行,再返回下一次迭代结果。通过这种方式,迭代器可以实现无限序列和惰性求值。
            n = yield r
            if not n:
                return
            print('[CONSUMER] ←← Consuming %s...' % n)
            time.sleep(1)
            r = '200 OK'
    def produce(c):
        # 1、首先调用c.next()启动生成器
        next(c)
        n = 0
        while n < 5:
            n = n + 1
            print('[PRODUCER] →→ Producing %s...' % n)
            # 2、然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
            cr = c.send(n)
            # 4、produce拿到consumer处理的结果,继续生产下一条消息;
            print('[PRODUCER] Consumer return: %s' % cr)
        # 5、produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
        c.close()
    if __name__=='__main__':
        # 6、整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
        c = consumer()
        produce(c)
        
        
    '''
    result:
    
    [PRODUCER] →→ Producing 1...
    [CONSUMER] ←← Consuming 1...
    [PRODUCER] Consumer return: 200 OK
    [PRODUCER] →→ Producing 2...
    [CONSUMER] ←← Consuming 2...
    [PRODUCER] Consumer return: 200 OK
    [PRODUCER] →→ Producing 3...
    [CONSUMER] ←← Consuming 3...
    [PRODUCER] Consumer return: 200 OK
    [PRODUCER] →→ Producing 4...
    [CONSUMER] ←← Consuming 4...
    [PRODUCER] Consumer return: 200 OK
    [PRODUCER] →→ Producing 5...
    [CONSUMER] ←← Consuming 5...
    [PRODUCER] Consumer return: 200 OK
    '''

    虽然它实现了并发,但并没有真正的提高效率,即没有区分是否使用io操作,如果能区分进行io操作则可以释放让别的函数执行计算代码,就提高了效率。

    使用 greenlet模块监控io操作:

    greenlet机制的主要思想是,生成器函数或者协程函数中的yield语句挂起函数的执行,直到稍后使用next()或send()操作进行恢复为止。可以使用一个调度器循环在一组生成器函数之间协作多个任务。greentlet是python中实现我们所谓的"Coroutine(协程)"的一个基础库.

    from greenlet import greenlet
     
    def test1():
        print (12)
        gr2.switch()
        print (34)
        gr2.switch()
     
    def test2():
        print (56)
        gr1.switch()
        print (78)
     
    gr1 = greenlet(test1)
    gr2 = greenlet(test2)
    gr1.switch()

    gevent模块实现协程:

    gevent是第三方库,通过greenlet实现协程,其基本思想是,当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

    由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:

    import gevent
    import time
    
    def foo():
        print("running in foo")
        gevent.sleep(2)
        print("switch to foo again")
    
    def bar():
        print("switch to bar")
        gevent.sleep(5)
        print("switch to bar again")
    
    start=time.time()
    
    gevent.joinall(
        [gevent.spawn(foo),
        gevent.spawn(bar)]
    )
    
    print(time.time()-start)

    当然,实际代码里,我们不会用gevent.sleep()去切换协程,而是在执行到IO操作时,gevent自动切换,代码如下:

    from gevent import monkey
    monkey.patch_all()
    import gevent
    from urllib import request
    import time
    
    def f(url):
        print('GET: %s' % url)
        resp = request.urlopen(url)
        data = resp.read()
        print('%d bytes received from %s.' % (len(data), url))
    
    start=time.time()
    
    gevent.joinall([
            gevent.spawn(f, 'https://itk.org/'),
            gevent.spawn(f, 'https://www.github.com/'),
            gevent.spawn(f, 'https://zhihu.com/'),
    ])
    
    # f('https://itk.org/')
    # f('https://www.github.com/')
    # f('https://zhihu.com/')
    
    print(time.time()-start)

    扩展:

    gevent是一个基于协程(coroutine)的Python网络函数库,通过使用greenlet提供了一个在libev事件循环顶部的高级别并发API。

    主要特性有以下几点:

    <1> 基于libev的快速事件循环,Linux上面的是epoll机制

    <2> 基于greenlet的轻量级执行单元

    <3> API复用了Python标准库里的内容

    <4> 支持SSL的协作式sockets

    <5> 可通过线程池或c-ares实现DNS查询

    <6> 通过monkey patching功能来使得第三方模块变成协作式

    gevent.spawn()方法spawn一些jobs,然后通过gevent.joinall将jobs加入到微线程执行队列中等待其完成,设置超时为2秒。执行后的结果通过检查gevent.Greenlet.value值来收集。

    1、关于Linux的epoll机制:
    
    epoll是Linux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的
    增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。epoll的优点:
    
    (1)支持一个进程打开大数目的socket描述符。select的一个进程所打开的FD由FD_SETSIZE的设置来限定,而epoll没有这个限制,它所支持的FD上限是
    最大可打开文件的数目,远大于2048。
    
    (2)IO效率不随FD数目增加而线性下降:由于epoll只会对“活跃”的socket进行操作,于是,只有”活跃”的socket才会主动去调用 callback函数,其他
    idle状态的socket则不会。
    
    (3)使用mmap加速内核与用户空间的消息传递。epoll是通过内核于用户空间mmap同一块内存实现的。
    
    (4)内核微调。
    
    2、libev机制
    
    提供了指定文件描述符事件发生时调用回调函数的机制。libev是一个事件循环器:向libev注册感兴趣的事件,比如socket可读事件,libev会对所注册的事件
    的源进行管理,并在事件发生时触发相应的程序。
    
    ps
    补充

     

  • 相关阅读:
    leetcode 190 Reverse Bits
    vs2010 单文档MFC 通过加载位图文件作为客户区背景
    leetcode 198 House Robber
    记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence
    逆序数2 HDOJ 1394 Minimum Inversion Number
    矩阵连乘积 ZOJ 1276 Optimal Array Multiplication Sequence
    递推DP URAL 1586 Threeprime Numbers
    递推DP URAL 1167 Bicolored Horses
    递推DP URAL 1017 Staircases
    01背包 URAL 1073 Square Country
  • 原文地址:https://www.cnblogs.com/drchen/p/6837704.html
Copyright © 2011-2022 走看看