zoukankan      html  css  js  c++  java
  • BZOJ4836: [Lydsy1704月赛]二元运算【分治FFT】【卡常(没卡过)】

    Description

    定义二元运算 opt 满足

    img

    现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问。每次询问给定一个数字 c

    你需要求出有多少对 (i, j) 使得 a_i opt b_j=c 。

    Input

    第一行是一个整数 T (1≤T≤10) ,表示测试数据的组数。

    对于每组测试数据:

    第一行是三个整数 n,m,q (1≤n,m,q≤50000) 。

    第二行是 n 个整数,表示 a_1,a_2,?,a_n (0≤a_1,a_2,?,a_n≤50000) 。

    第三行是 m 个整数,表示 b_1,b_2,?,b_m (0≤b_1,b_2,?,b_m≤50000) 。

    第四行是 q 个整数,第 i 个整数 c_i (0≤c_i≤100000) 表示第 i 次查询的数。

    Output

    对于每次查询,输出一行,包含一个整数,表示满足条件的 (i, j) 对的个数。

    Sample Input

    2
    2 1 5
    1 3
    2
    1 2 3 4 5
    2 2 5
    1 3
    2 4
    1 2 3 4 5

    Sample Output

    1
    0
    1
    0
    0
    1
    0
    1
    0
    1

    思路

    在上面两种情况中,减法可以把y取反直接fft,然后加法因为有限制可以在值域上进行分治fft

    然后其实很板子的。。。


    #include<bits/stdc++.h>
     
    using namespace std;
     
    typedef long long ll;
     
    namespace io {
     
    const int BUFSIZE = 1 << 20;
    char ibuf[BUFSIZE], *is = ibuf, *it = ibuf;
    char obuf[BUFSIZE], *os = obuf, *ot = obuf + BUFSIZE - 1;
     
    char read_char() {
      if (is == it)
        it = (is = ibuf) + fread(ibuf, 1, BUFSIZE, stdin);
      return *is++;
    }
     
    int read_int() {
      int x = 0, f = 1;
      char c = read_char();
      while (!isdigit(c)) {
        if (c == '-') f = -1;
        c = read_char();
      }
      while (isdigit(c)) x = x * 10 + c - '0', c = read_char();
      return x * f;
    }
     
    ll read_ll() {
      ll x = 0, f = 1;
      char c = read_char();
      while (!isdigit(c)) {
        if (c == '-') f = -1;
        c = read_char();
      }
      while (isdigit(c)) x = x * 10 + c - '0', c = read_char();
      return x * f;
    }
     
    void read_string(char* s) {
      char c = read_char();
      while (isspace(c)) c = read_char();
      while (!isspace(c)) *s++ = c, c = read_char();
      *s = 0;
    }
     
    void flush() {
      fwrite(obuf, 1, os - obuf, stdout);
      os = obuf;
    }
     
    void print_char(char c) {
      *os++ = c;
      if (os == ot) flush();
    }
     
    void print_int(int x) {
      static char q[20];
      if (!x) print_char('0');
      else {
        if (x < 0) print_char('-'), x = -x;
        int top = 0;
        while (x) q[top++] = x % 10 + '0', x /= 10;
        while (top--) print_char(q[top]);
      }
    }
     
    void print_ll(ll x) {
      static char q[20];
      if (!x) print_char('0');
      else {
        if (x < 0) print_char('-'), x = -x;
        int top = 0;
        while (x) q[top++] = x % 10 + '0', x /= 10;
        while (top--) print_char(q[top]);
      }
    }
     
    struct flusher_t {
      ~flusher_t() {
        flush();
      }
    } flusher;
     
    };
    using namespace io;
     
    const int N = 3e5 + 10;
    const int M = 5e4 + 10;
    const double eps = 1e-6;
    const double PI = acos(-1);
     
    typedef complex<double> Complex;
    typedef vector<Complex> Poly;
     
    Complex w[2][N];
     
    void init() {
      for (int i = 1; i < (1 << 18); i <<= 1) {
        w[0][i] = w[1][i] = Complex(1, 0);
        Complex wn(cos(PI / i), sin(PI / i));
        for (int j = 1; j < i; j++)
          w[1][i + j] = w[1][i + j - 1] * wn;
        wn = Complex(cos(PI / i), -sin(PI / i));
        for (int j = 1; j < i; j++)
          w[0][i + j] = w[0][i + j - 1] * wn;
      }
    }
     
    void transform(Complex *t, int len, int typ) {
      for (int i = 0, j = 0, k; j < len; j++) {
        if (i > j) swap(t[i], t[j]);
        for (k = (len >> 1); k & i; k >>= 1) i ^= k;
        i ^= k;
      }
      for (int i = 1; i < len; i <<= 1) {
        for (int j = 0; j < len; j += (i << 1)) {
          for (int k = 0; k < i; k++) {
            Complex x = t[j + k], y = w[typ][i + k] * t[j + k + i];
            t[j + k] = x + y;
            t[j + k + i] = x - y;
          }
        }
      }
      if (typ) return;
      for (int i = 0; i < len; i++)
        t[i] = Complex(t[i].real() / (double) len, t[i].imag());
    }
     
    bool equ0(double x) {
      return fabs(x) < eps;
    }
     
    Poly mul(const Poly a, const Poly b) {
      static Poly cura, curb;
      cura = a, curb = b;
      int len = 1 << (int) ceil(log2(cura.size() + curb.size() - 1));
      cura.resize(len), curb.resize(len);
      transform(&cura[0], len, 1);
      transform(&curb[0], len, 1);
      for (int i = 0; i < len; i++)
        cura[i] *= curb[i];
      transform(&cura[0], len, 0);
      return cura;
    }
     
    Poly ansadd(N, 0), anssub(N, 0);
    int n, m, q, maxa, maxb;
    int a[N], b[N];
    int cnta[N], cntb[N];
     
    void devide(int l, int r) {
      if (l == r) return;
      int mid = (l + r) >> 1;
      devide(l, mid);
      devide(mid + 1, r);
      Poly x, y;
      int sizl = mid - l + 1, sizr = r - mid;
      x.resize(sizl);
      y.resize(sizr);
      for (int i = 0; i < sizl; i++)
        x[i] = cnta[i + l];
      for (int i = 0; i < sizr; i++)
        y[i] = cntb[i + mid + 1];
      x = mul(x, y);
      for (int i = 0; i < (signed) x.size(); i++)
        ansadd[i + l + mid + 1] += x[i];
    }
     
    void calcadd() {
      devide(0, max(maxa, maxb));
    }
     
    void calcsub() {
      static Poly x, y;
      x.resize(maxb + maxa + 1);
      y.resize(maxb + maxa + 1);
      for (int i = 0; i <= maxb + maxa; i++)
        x[i] = y[i] = 0;
      for (int i = 0; i <= maxa; i++)
        x[maxb + i] = cnta[i];
      for (int i = 0; i <= maxb; i++)
        y[maxb - i] = cntb[i];
      x = mul(x, y);
      for (int i = maxb * 2; i < (signed) x.size(); i++)
        anssub[i - maxb * 2] = x[i];
    }
     
    void solve() {
      n = read_int(), m = read_int(), q = read_int();
      maxa = maxb = 0;
      for (int i = 1; i <= n; i++) {
        cnta[a[i] = read_int()]++;
        maxa = max(maxa, a[i]);
      }
      for (int i = 1; i <= m; i++) {
        cntb[b[i] = read_int()]++;
        maxb = max(maxb, b[i]);
      }
      calcsub();
      calcadd();
      while (q--) {
        int c = read_int();
        print_ll((ll) round(ansadd[c].real()) + (ll) round(anssub[c].real()));
        print_char('
    '); 
      }
      for (int i = 0; i <= maxa; i++)
        cnta[i] = 0;
      for (int i = 0; i <= maxb; i++)
        cntb[i] = 0;
      for (int i = 0; i <= maxa + maxb; i++)
        ansadd[i] = anssub[i] = 0;
    }
     
    int main() {
    #ifdef dream_maker
      freopen("input.txt", "r", stdin);
    #endif
      init();
      int T = read_int();
      while (T--) solve();
      return 0;
    }
    
  • 相关阅读:
    jquery+ajax+ashx。ashx的使用方法
    如何在ashx页面获取Session值
    模式DIV。
    .net 中文传参
    5分钟无操作,退出,操作方法,关闭页面
    SQL Server DATEDIFF() 函数(SQL计算时间差)
    Sql server 事务的两种用法
    正则表达式相关
    jQuery AJAX实现调用页面后台方法。调用ashx方法
    时间差(类.精确到秒).net中实现Datediff类C#
  • 原文地址:https://www.cnblogs.com/dream-maker-yk/p/10242332.html
Copyright © 2011-2022 走看看