Description
Sam和他的妹妹Sara有一个包含n × m个方格的表格。她们想要将其的每个方格都染成红色或蓝色。出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 个)红色方格。例如,右图是一个合法的表格染色方案(在打印稿中,深色代表蓝色,浅色代表红色) 。
可是昨天晚上,有人已经给表格中的一些方格染上了颜色!现在Sam和Sara非常生气。不过,他们想要知道是否可能给剩下的方格染上颜色,使得整个表格仍然满足她们的要求。如果可能的话,满足他们要求的染色方案数有多少呢?
Input
输入的第一行包含三个整数n, m和k,分别代表表格的行数、列数和已被染色的方格数目。
之后的k行描述已被染色的方格。其中第 i行包含三个整数xi, yi和ci,分别代表第 i 个已被染色的方格的行编号、列编号和颜色。ci为 1 表示方格被染成红色,ci为 0表示方格被染成蓝色。
Output
输出一个整数,表示可能的染色方案数目 W 模 10^9得到的值。(也就是说,如果 W大于等于10^9,则输出 W被10^9除所得的余数)。
对于所有的测试数据,2 ≤ n, m ≤ 10^6,0 ≤ k ≤ 10^6,1 ≤ xi ≤ n,1 ≤ yi ≤ m。
Sample Input
3 4 3
2 2 1
1 2 0
2 3 1
Sample Output
8
思路
发现行和行之间是可以相互影响的
进一步发现i行只能在i-1行的基础上把所有奇数列或者偶数列全部异或,所以就可以考虑每一行的数对第一行的影响就可以了
因为每一行都会影响第一行取值的情况,所以把第一行建立并查集。
一个是维护联通关系的普通并查集
一个是维护抑或关系的带权并查集
然后就可以维护了
最后答案是(2^{第一行联通块个数+没有染色的格子数量})
还是看了hwzer学长的blog才会的
#include<bits/stdc++.h>
using namespace std;
#define Mod 1000000000
#define N 1000010
#define LL long long
int n,m,K,tot;
int fa[N],fat[N],g[N];
bool mark[N],vis[N];
vector<int> p[N],col[N];
int fast_pow(LL a,LL b){
LL ans=1;
while(b){
if(b&1)ans=a*ans%Mod;
b>>=1;
a=a*a%Mod;
}
return ans;
}
int find1(int x){
if(x==fa[x])return x;
return fa[x]=find1(fa[x]);}
int find2(int x){
if(x==fat[x])return x;
int tmp=find2(fat[x]);
g[x]^=g[fat[x]];
return fat[x]=tmp;
}
bool merge(int x,int y,int t){
int fx=find2(x),fy=find2(y);
if(fx==fy)return (g[x]^g[y])==t;
fat[fx]=fy;
g[fx]=(g[x]^g[y]^t);
return 1;
}
int main(){
scanf("%d%d%d",&n,&m,&K);
for(int i=1;i<=m;i++)fa[i]=i,fat[i]=i;
for(int i=1;i<=K;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(x==1)vis[y]=1;
mark[x]=1;
p[x].push_back(y);
col[x].push_back(z);
}
for(int i=1;i<=n;i++)
for(int j=1;j<(signed)p[i].size();j++){
int x=p[i][j],y=p[i][j-1];
int cx=col[i][j],cy=col[i][j-1];
int fx=find1(x),fy=find1(y);
fa[fx]=fy;
if(vis[fx])vis[fy]=1;
int t=cx^cy;
if(x%2!=y%2)t=(t^(i-1))&1;
if(!merge(x,y,t)){puts("0");return 0;}
}
for(int i=1;i<=m;i++)if(fa[i]==i&&vis[i]==0)tot++;
for(int i=2;i<=n;i++)if(!mark[i])tot++;
printf("%d
",fast_pow(2,tot));
return 0;
}