zoukankan      html  css  js  c++  java
  • 2017NOIPDay1(小凯的疑惑 &时间复杂度&逛公园)

    P3951 小凯的疑惑 / [蓝桥杯2013省]买不到的数目

    题意

    给两个互质的整数a,b求一个数ans,使得

    [∀i > ans , i = x cdot a + y cdot b (a,bin Z) ]

    思路

    别人的思路:不太清楚别人是怎么搞的,其实就一条式子:ans = (a-1)*b-a;

    我的思路(比较复杂):

    首先,强行令a<b

    以7,3为例,下面能直接用3表示的画〇,用7,3组合或直接用7表示的画√

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    以3*floor(7/3)=6为一个单位,拆开得:

    0 1 2 3 4 5
    6 7 8 9 10 11
    12 13 14 15 16 17

    可以发现,表中是有规律变化的,每一次变化表中都多一个√,我们把上面无限延伸的表抽象成长度为a的表,每一个√的位置就是上一个√位置+b%a(溢出则对a取模),那么最后一个被填的位置减去a就是答案

    还是以7,3为例

    x*a x*a+1 x*a+2

    一次变化(x+=floor(b/a)):

    x*a x*a+1 x*a+2
    (ans)

    二次变化(x+=floor(b/a)):

    x*a x*a+1 x*a+2

    显然,再下一次变化后〇和√就重合了(若a,b不互质,则在重合的时候没有完全覆盖,因此永远没有答案)

    因此,原问题转化为找

    [xcdot a=bcdot y + b \% a(x,yin )……① ]

    并使得方程两边的值最小,答案就是

    [ax-a-b\%a ]

    又因为

    [b=acdot floor(b/a)+b\%a ]

    ①式化为

    [xcdot a=ycdot acdot floor(b/a)+(y+1)(b\%a) ]

    即使得方程右边是a的倍数,显然,加号左边是a的倍数,那么,就是要让加号右边也是a的倍数,又因为要满足最小,我们对a和b%a分解质因数,如果是a有而b%a无的质因子,我们就用(y+1)补上,使得(y+1)(b%a)是a得倍数

    这样y就出来了,答案也自然出来了

    代码(根号下min(a,b)复杂度,可通过)

    #include <iostream>
    #define ll long long
    using namespace std;
    ll a , b;
    int gcd(int a , int b){
    	return b == 0 ? a : gcd(b , a % b);
    }
    int main(){
    	cin >> a >> b;
    	if(a > b){ll tmp = a ; a = b ; b = tmp;}
    	if(a == 1){
    		cout << 0;
    		return 0;
    	}
    	ll c = b % a;
    	ll d = b / a;
    	
    	ll tmpa = a , tmpc = c;
    	ll y = 1;
    	for(ll i = 2 ; i * i <= tmpa ; i++){
    		while(tmpa % i == 0){
    			if(tmpc % i != 0)
    				y *= i;
    			else
    				tmpc /= i;
    			tmpa /= i;
    		}
    	}
    	if(tmpc % tmpa != 0)
    		y *= tmpa;
    	y--;
    	
    	ll ax = c + c * y + y * a * d;
    	cout << ax - a - c;
    	return 0;
    } 
    

    P3952 时间复杂度

    题意

    给一段“A++”代码,算时间复杂度

    思路

    这种题往往看着简单,实际暗含无数细节

    仔细看题,循环范围一共有一下情况:

    x y 对时间复杂度的影响
    常数 常数 1.x<=y:常数复杂度
    2.x > y:被嵌套的代码不运行
    常数 n n
    n n 常数
    n 常数 被嵌套的代码不运行

    ERR的情况:

    1. F,E不匹配:类似于括号匹配问题,定义变量check=0,遇到F加一,遇到E减一,中途不能小于0,结束时一定为0
    2. 变量名不重复:用栈存储即可

    几个细节:

    1. 递归到什么时候结束:记录总行数,若当前行>m,立刻在输入前退出递归,防止输入错位
    2. 循环体的从属问题:将递归函数定义为bool类型,返回true则表示遇到E,当前循环结束

    代码

    #include <iostream>
    #include <cstdio>
    #include <string>
    using namespace std;
    int maxn;
    int m;
    int stoint(string s){
    	int x = 0;
    	for(int i = 0 ; i < s.size() ; i++)
    		x = (x << 1) + (x << 3) + s[i] - '0';
    	return x;
    }
    int times;
    bool err;
    string stac[110];
    int top;
    int check;
    bool dfs(int cnt){
    	times++;
    	if(times > m){
    		err = true;
    		return true;
    	}
    	if(cnt > maxn)
    		maxn = cnt;
    	string x , y , tmp;
    	cin >> tmp;
    	if(tmp == "E"){
    		check--;
    		if(check < 0)err = true;
    		return true;
    	}
    	else{
    		
    		check++;
    		cin >> tmp;
    //		if(tmp == "m")
    //			cout << cnt << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    ";
    		for(int i = 1 ; i <= top ; i++)
    			if(tmp == stac[i])
    				err = true;
    		top++;
    		stac[top] = tmp;
    		cin >> x >> y;
    //		cout << x << endl << y << endl;
    		if(x[0] == 'n'){
    			if(y[0] == 'n')
    				while(!dfs(cnt));
    			else
    				while(!dfs(-(1 << 29)));
    		}
    		else{
    			if(y[0] == 'n')
    				while(!dfs(cnt + 1));
    			else{
    				if(stoint(x) > stoint(y))
    					while(!dfs(-(1 << 29)));
    				else
    					while(!dfs(cnt));
    			}
    		}
    		top--;
    	}
    	return false;
    } 
    int main() {
    	int T;
    	cin >> T;
    	while(T--){
    		times = 0;
    		maxn = 0;
    		err = false;
    		top = 0;
    		check = 0;
    		
    		string s;
    		cin >> m;
    		cin >> s;
    		s = s.substr(2 , s.size() - 2 - 1);
    //		cout << s << endl;
    		int dl = 0;
    		if(s[0] != 'n')dl = 0;
    		else{
    			s = s.substr(2);
    			for(int i = 0 ; i < s.size() ; i++)
    				dl = dl * 10 + s[i] - '0';
    		}
    		while(times < m)dfs(0);
    		
    		if(check != 0)err = true;
    		
    		if(err)	printf("ERR
    ");
    		else {
    			if(maxn == dl)printf("Yes
    ");
    			else	printf("No
    ");
    		}
    //		cout << maxn << endl;
    //		system("pause");
    	}
    	return 0;
    }
    

    P3953 逛公园

    题意

    求从1到n的路径数量,满足长度在[dis(1,n) , dis(1,n)+k]范围内(dist(1,n)表示1到n的最短路径长度)

    思路

    记忆化搜索

    看到k才去到50,那么我们就直接在合法范围内枚举路径的长度

    输出-1的情况

    就是某条路径中包含一个权值为0的环的情况(因为一直绕着环走,路径长度不变,但每次都是不一样的)

    1版(3TLE)

    定义dfs(x,dist),返回以x为终点,1为起点,长度为dist的路径数量

    用map容器记录dfs(x,dist)的值

    加点小剪枝:dist<(1到x的最短路径)时,没有方案(return 0)

    2版(AC)

    参考了这个大佬的博客

    dfs(x,dist)表示以x为终点,还差dist长度到达目标路径长度

    记忆化直接用数组rec[n] [55]实现即可

    转移:

    [dfs(x,dist)=Sigma dfs(s,dist - ed2[i].len + (dis[x] - dis[ed2[i].u])) ]

    说明:s表示与x相连的点(边从s指向x,这就是开两个链式前向星的原因),ed2[i].u表示上述边的长度,dis[ ]为1到所有点的最短路长度

    疑惑

    按n=100000,m=200000开数组不够用,会越界,甚至两倍都不行(这就是苦苦调试了很久,改了很多不必改的东西的原因),最后开了10倍才AC

    代码

    1版

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <map>
    #include <set>
    #define ll long long
    #define nn 1000010
    using namespace std;
    int read(){
    	int re = 0 , sig = 1;
    	char c = getchar();
    	while(c < '0' || c > '9'){
    		if(c == '-')sig = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9'){
    		re = (re << 1) + (re << 3) + c - '0';
    		c = getchar();
    	}
    	return re * sig;
    }
    
    struct ednode{
    	int u , nxt , len;
    }ed[nn * 2] , ed2[nn * 2];
    int head[nn] , head2[nn];
    inline void addedge(int u , int v , int len){
    	static int top = 1;
    	if(u == v && u == -1){top = 1;	return;}
    	ed[top].u = v , ed[top].len = len , ed[top].nxt = head[u] , head[u] = top;
    	top++;
    }
    inline void addedge2(int u , int v , int len){
    	static int top = 1;
    	if(u == v && u == -1){top = 1;	return;}
    	ed2[top].u = v , ed2[top].len = len , ed2[top].nxt = head2[u] , head2[u] = top;
    	top++;
    }
    int n , m , k ;
    ll p;
    int dis[nn] ;
    ll cnt[nn];
    bool vis[nn];
    void spfa(){
    	memset(dis , 0x3f , sizeof(dis));
    	memset(vis , 0 , sizeof(vis));
    	memset(cnt , 0 , sizeof(cnt));
    	
    	queue <int> q;
    	dis[1] = 0;
    	vis[1] = true;
    	cnt[1] = 1;
    	q.push(1);
    	while(!q.empty()){
    		int k = q.front();
    		q.pop();
    		vis[k] = false;
    		for(int i = head[k] ; i ; i = ed[i].nxt){
    			if(dis[ed[i].u] > dis[k] + ed[i].len){
    				dis[ed[i].u] = dis[k] + ed[i].len;
    				cnt[ed[i].u] = 0;
    				if(!vis[ed[i].u]){
    					q.push(ed[i].u);
    					vis[ed[i].u] = true;
    				}
    			}
    		}
    	}
    }
    ll sum;
    int goa[nn];
    bool break_;
    map<pair<int , int> , int> rec;
    ll dfs(int x , int dist) {
    	if(dist < 0)return 0;
    	if(goa[x] == dist)
    		break_ = true;
    	if(break_)return 0;
    	if(dist < dis[x])return 0;
    	
    	if(x == 1 && dist == 0)
    		return 1;
    	if(rec.find(make_pair(x , dist)) != rec.end())
    		return rec[make_pair(x , dist)];
    	ll re = 0;
    	int temp = goa[x];
    	goa[x] = dist;
    	for(int i = head2[x] ; i ; i = ed2[i].nxt){
    		re += dfs(ed2[i].u , dist - ed2[i].len);
    		re %= p;
    	}
    	goa[x] = temp;
    	if(!break_)
    		rec[make_pair(x , dist)] = re;
    	return re;
    }
    int main(){
    //	freopen("P3953_7.in" , "r" , stdin);
    	int T = read();
    	while(T--){
    		addedge(-1 , -1 , 0);
    		addedge(-1 , -1 , 0);
    		memset(head , 0 , sizeof(head));
    		memset(head2 , 0 , sizeof(head2));
    		rec.clear();
    		
    		n = read();	m = read(); k = read(); p = read();
    		for(int i = 1 ; i <= m ; i++){
    			int u , v , len;
    			u = read() , v = read() , len = read();
    			addedge(u , v , len);
    			addedge2(v , u , len);
    		}
    		spfa();
    		if(dis[n] == 0){
    			printf("-1
    ");
    			continue;
    		}
    		sum = 0;
    		break_ = false;
    		
    		for(int i = 0 ; i <= k && !break_; i++){
    			memset(goa , -1 , sizeof(goa));
    			sum = (sum + dfs(n , dis[n] + i)) % p;
    		}
    		sum = (sum + cnt[n]) % p;
    		if(break_)sum = -1;
    		printf("%d
    " , (int)sum);
    	}
    	
    	return 0;
    } 
    

    2版

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <vector>
    #define ll long long
    #define nn 1000010
    using namespace std;
    int read(){
    	int re = 0 , sig = 1;
    	char c = getchar();
    	while(c < '0' || c > '9'){
    		if(c == '-')sig = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9'){
    		re = (re << 1) + (re << 3) + c - '0';
    		c = getchar();
    	}
    	return re * sig;
    }
    
    struct ednode{
    	int u , nxt , len;
    }ed[nn * 2] , ed2[nn * 2];
    int head[nn] , head2[nn];
    inline void addedge(int u , int v , int len){
    	static int top = 1;
    	if(u == v && u == -1){top = 1;	return;}
    	ed[top].u = v , ed[top].len = len , ed[top].nxt = head[u] , head[u] = top;
    	top++;
    }
    inline void addedge2(int u , int v , int len){
    	static int top = 1;
    	if(u == v && u == -1){top = 1;	return;}
    	ed2[top].u = v , ed2[top].len = len , ed2[top].nxt = head2[u] , head2[u] = top;
    	top++;
    }
    int n , m , k ;
    ll p;
    int dis[nn] ;
    ll cnt[nn];
    bool vis[nn];
    vector <int> from[nn];
    void spfa(){
    	memset(dis , 0x3f , sizeof(dis));
    	memset(vis , 0 , sizeof(vis));
    	
    	queue <int> q;
    	dis[1] = 0;
    	vis[1] = true;
    	q.push(1);
    	while(!q.empty()){
    		int k = q.front();
    		q.pop();
    		vis[k] = false;
    		for(int i = head[k] ; i ; i = ed[i].nxt){
    			if(dis[ed[i].u] > dis[k] + ed[i].len){
    				dis[ed[i].u] = dis[k] + ed[i].len;
    				from[ed[i].u].clear();
    				if(!vis[ed[i].u]){
    					q.push(ed[i].u);
    					vis[ed[i].u] = true;
    				}
    			}
    			if(dis[ed[i].u] == dis[k] + ed[i].len)
    				from[ed[i].u].push_back(k);
    				
    		}
    	}
    }
    ll sum;
    int goa[nn];
    int rec[nn][55];
    bool break_;
    ll dfs(int x , int dist) {
    	if(dist == 0)return cnt[x];
    	if(dist < 0)return 0;
    	if(goa[x] == dist)
    		break_ = true;
    	if(break_)return 0;
    	
    	if(rec[x][dist] != -1)
    		return rec[x][dist];
    	rec[x][dist] = 0;
    	int tmp = goa[x];
    	goa[x] = dist;
    	for(int i = head2[x] ; i ; i = ed2[i].nxt){
    		rec[x][dist] += dfs(ed2[i].u , dist - ed2[i].len + (dis[x] - dis[ed2[i].u]));
    		rec[x][dist] %= p;
    	}
    	goa[x] = tmp;
    	return rec[x][dist];
    }
    void GetCnt(int x){
    	if(cnt[x] != -1)return;
    	cnt[x] = 0;
    	for(int i = 0 ; i < from[x].size() ; i++){
    		GetCnt(from[x][i]);
    		cnt[x] += cnt[from[x][i]];
    	}
    	
    }
    int main(){
    //	freopen("P3953_7.in" , "r" , stdin);
    	int T = read();
    	while(T--){
    		addedge(-1 , -1 , 0);
    		addedge(-1 , -1 , 0);
    		memset(head , 0 , sizeof(head));
    		memset(head2 , 0 , sizeof(head2));
    		memset(rec , -1 , sizeof(rec));
    		memset(cnt , -1 , sizeof(cnt));
    		n = read();	m = read(); k = read(); p = read();
    		for(int i = 1 ; i <= m ; i++){
    			int u , v , len;
    			u = read() , v = read() , len = read();
    			addedge(u , v , len);
    			addedge2(v , u , len);
    		}
    		spfa();
    		cnt[1] = 1;
    		for(int i = 1 ; i <= n ; i++)
    			GetCnt(i);
    		if(dis[n] == 0){
    			printf("-1
    ");
    			continue;
    		}
    		sum = 0;
    		break_ = false;
    		
    		for(int i = 0 ; i <= k && !break_; i++){
    			memset(goa , 0 , sizeof(goa));
    			sum = (sum + dfs(n , i)) % p;
    		}
    		if(break_)sum = -1;
    		printf("%d
    " , (int)sum);
    	}
    	
    	return 0;
    } 
    
  • 相关阅读:
    母牛的故事
    实现图的邻接矩阵和邻接表的存储
    各个位数和,找最终和为个位数
    排序5之归并排序
    排序2之冒泡与选择排序
    神奇的魔方
    关于SaveChanges
    ADO.NET Entity Framework 4.0 Self Tracking Entity
    EF4.0自跟踪实体使用小结
    ADO.NET Entity Framework 4.0 新特性
  • 原文地址:https://www.cnblogs.com/dream1024/p/13957722.html
Copyright © 2011-2022 走看看