zoukankan      html  css  js  c++  java
  • olcano调度器源代码走读actions篇

    Enqueue

    Queues
    QueueMap
    jobsMap
    
    //扫描一遍job,初始化上面三个数据结构
    For job in ssn.Jobs 
       //过滤1
       found := ssn.Queues[job.Queue]
       existed := queueMap[queue.UID]
       //过滤2
       if job.PodGroup.Status.Phase == scheduling.PodGroupPending
           found := jobsMap[job.Queue];
            
       
    /*更新node资源使用情况*/
    For node in ssn
      Update Total_nodes
      Update Used_nodes
    
    /*反复enqueue操作*/
    While(!queues.Empty()){
    
      /*资源不足 结束enqueue操作*/
      if idle.IsEmpty() break
      //deal with target job , if exists , judege whether it can be
      
      minReq <--- job
      idle   <--- node资源
      if node资源足够 
         inqueue := true;
      if inqueue
          inqueue
          Queues.push(queue)
    } 

    逻辑

    筛选符合要求的任务进入待调度队列。过滤条件主要是对应任务再QueueMap是否存在,node是否满足任务的最小资源需求量minReq。

    场景

    任务调度的准备过程,符合要求可以被调度的任务inqueue。任务状态由pending变为inqueue

    Allocate

    	step1. pick a namespace named N (using ssn.NamespaceOrderFn)
    	step2. pick a queue named Q from N (using ssn.QueueOrderFn)
    	step3. pick a job named J from Q (using ssn.JobOrderFn)
    	step4. pick a task T from J (using ssn.TaskOrderFn)
    	step5. use predicateFn to filter out node that T can not be allocated on.
    	step6. use ssn.NodeOrderFn to judge the best node and assign it to T
    

    逻辑

    <task,node>的绑定工作,包含预选和优选过程。使用predicateFn来过滤不能分配的node,使用NodeOrderFn打分来找到最好的node。

    场景

    allocate从namespce层次开始遍历,不同的namespace可以代表不同业务的任务集合,这将有助于处理多类型的复杂业务场景的资源分配功能。不同的业务场景可以注册合适的调度算法(plugins中实现了多种具体的调度策略)

    Preempt

    
    //Queue内Jobs之间的抢占
    For queue in queues //枚举queue
       若干抢占条件的过滤  
    //job内task的抢占
       For job in range underRequest
        若干抢占条件过滤
    
    

    逻辑

    这里抢占分为两个粒度,能够看到必须是同一个Queue下的job抢占,或者同一job下的task抢占。

    场景

    • Queue的粒度:相似的场景下发的任务进入到一个Queue中,多个Queue之间不存在资源的抢占。多个Queue之间对集群资源进行比例分配。在很多复杂的调度场景,按照业务对基本资源(cpu、磁盘、GPU、内存、网络带宽)的需求进行分类分组: 计算密集的场景如AI、高性能科学计算所对应的Queue的资源划分cpu、GPU、内存等计算资源需求高;spark框架等大数据场景磁盘需求高,等等。不同的Queue对资源的分配虽然是共享的,但如果AI场景抢占了所有的cpu资源,会导致别的场景对应的Queue中的任务饿死。因此分配基于Queue的粒度,就是为了保证资源的业务吞吐量。

    • job的粒度:同一job的task进行抢占,能够保证某些特定业务下特定功能的高实时性要求。例如spark大数据场景,针对一些批处理的功能,实时性要求不高;针对实时数据流的CRUD业务,需要快速反馈结果。此时就需要job内部进行抢占。

    Reclaim

       输出正在调度的Jobs和Quenes的数量(reclaim针对的对象)
       For job in ssn(查一下ssn的含义,这里其实迭代的是ssn.Jobs
        (job.PodGroup.Status.Phase == scheduling.PodGroupPending的具体含义要搞清楚 等待调度?Elect中有一样的代码 回收正在调度的代码,等待调度的continue掉。)
    
         1.等待调度的job拒绝reclaim
         2.拒绝被reclaim的情况(有效job),具体的原因和信息抽象掉了
         3.Job的对应Queue found异常,不需要recliam
              ADD一个Queue
              更新queueMap
              更新queues
         4. //既然没有交互信息姑且理解为这个循环的主要过程 筛选[符合要求的Job]
    
           更新preemptorsMap(下面的迭代会用)
           更新preemptorTasks
    
    While(!Queues.Empty())
       Queue  = Queues.pop()//出队一个元素
       If  Overused --> continue 
       Found high priority job
       Found high priority task to reclaim others
    
       If found:= preemptorTasks[job.UID] 判断task是否在抢占映射job-Task中。没有发现 ==> high priority task ==> 不进行操作continue;
    
    For n in ssn.Nodes://开始操作资源层的节点
           If predicates fialed  -> continue
    //predicates基于task - n的预判函数predicateFn
            //开始考察在n上所有的Task(是否reclaim)
    
    For task on n
         Non running task -> continue;
         [Job , Task] not found -> continue;
         //clone task to avoid modify Task ‘s status on node n
         Update reclainmees
         确定牺牲品victims(reclaim的对象)
         
    Start to Reclaim...
    

    逻辑

    当新的任务进入等待调度队列,集群资源无法满足,进行资源回收。相对于preempt主动强占,这是一种被迫触发的抢占。

    场景

    当任务负载超过系统资源量时,例如双十一秒杀、红包雨等访问量骤升的场景,需要关注reclaim的配置,具体而言和preempt是很相似的过程。

    Elect

    //select the target job which is of  the highest priority and waits for the longest time
    
    For job in ssn.Jobs
       If job.PodGroup.status.phase == scheduling.podGroupPending
       pendingJobs <---- this job
       Print these jobs which have been elected
    

    逻辑

    非常抽象的Job选取工作,给出ssn.jobs,当job满足某个状态条件的时候,直接就可以把这个job加入到pendingJobs这个数据结构中。注释中提到需要highest priority 、wait for longest time,但是这里没有提到具体如何实现。

    场景

    这个模块提供了选择高优先、长等待的job,属于进行调度之前的预选工作,适宜在各种调度场景(分配、抢占、预留等)之前的模块。

    Reserve

    //select a node which is not locked and has the most idle resoure
    targetJob(if there is not a targetJob return)
    if target job has not been scheduled, select a locked node for it
    else reset target job and locked nodes
    

    逻辑

    job,node进行绑定。抽象了ReserveNodes

    electplugins中的reservation一起组成了资源预留机制。

    场景

    和preempt抢占模块类似,最终是需要处理jobnode绑定关系。用于资源预留,进行调度前的准备工作。

  • 相关阅读:
    Vue源码学习之双向绑定
    Vue源码学习之数据初始化
    JavaScript跨域资源请求(CORS)解决方案
    Vue学习笔记
    MongoDB学习笔记
    实现一个类似bootstrap的多级下拉菜单
    bootstrap栅格系统的实现
    滑动效果的标签页切换
    一个简单的类似Vue的双向绑定
    元素垂直居中的常见方法
  • 原文地址:https://www.cnblogs.com/dream397/p/15003246.html
Copyright © 2011-2022 走看看