zoukankan      html  css  js  c++  java
  • flume采集log4j日志到kafka

    简单测试项目:

    1、新建Java项目结构如下:

    测试类FlumeTest代码如下:

    package com.demo.flume;
    
    import org.apache.log4j.Logger;
    
    public class FlumeTest {
        
        private static final Logger LOGGER = Logger.getLogger(FlumeTest.class);
    
        public static void main(String[] args) throws InterruptedException {
            for (int i = 20; i < 100; i++) {
                LOGGER.info("Info [" + i + "]");
                Thread.sleep(1000);
            }
        }
    }

    监听kafka接收消息Consumer代码如下:

    package com.demo.flume;
    
    /**
     * INFO: info
     * User: zhaokai
     * Date: 2017/3/17
     * Version: 1.0
     * History: <p>如果有修改过程,请记录</P>
     */
    
    import java.util.Arrays;
    import java.util.Properties;
    
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    
    public class Consumer {
    
        public static void main(String[] args) {
            System.out.println("begin consumer");
            connectionKafka();
            System.out.println("finish consumer");
        }
    
        @SuppressWarnings("resource")
        public static void connectionKafka() {
    
            Properties props = new Properties();
            props.put("bootstrap.servers", "192.168.1.163:9092");
            props.put("group.id", "testConsumer");
            props.put("enable.auto.commit", "true");
            props.put("auto.commit.interval.ms", "1000");
            props.put("session.timeout.ms", "30000");
            props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
            consumer.subscribe(Arrays.asList("flumeTest"));
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(100);
                try {
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                for (ConsumerRecord<String, String> record : records) {
                    System.out.printf("===================offset = %d, key = %s, value = %s", record.offset(), record.key(),
                            record.value());
                }
            }
        }
    }

    log4j配置文件配置如下:

    log4j.rootLogger=INFO,console
    
    # for package com.demo.kafka, log would be sent to kafka appender.
    log4j.logger.com.demo.flume=info,flume
    
    log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
    log4j.appender.flume.Hostname = 192.168.1.163
    log4j.appender.flume.Port = 4141
    log4j.appender.flume.UnsafeMode = true
    log4j.appender.flume.layout=org.apache.log4j.PatternLayout
    log4j.appender.flume.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %p [%c:%L] - %m%n
     
    # appender console
    log4j.appender.console=org.apache.log4j.ConsoleAppender
    log4j.appender.console.target=System.out
    log4j.appender.console.layout=org.apache.log4j.PatternLayout
    log4j.appender.console.layout.ConversionPattern=%d [%-5p] [%t] - [%l] %m%n

    备注:其中hostname为flume安装的服务器IP,port为端口与下面的flume的监听端口相对应

    pom.xml引入如下jar:

    <dependencies>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.10</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flume</groupId>
            <artifactId>flume-ng-core</artifactId>
            <version>1.5.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flume.flume-ng-clients</groupId>
            <artifactId>flume-ng-log4jappender</artifactId>
            <version>1.5.0</version>
        </dependency>
    
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
    
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.10.2.0</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.10</artifactId>
            <version>0.10.2.0</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-log4j-appender</artifactId>
            <version>0.10.2.0</version>
        </dependency>
        
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>18.0</version>
        </dependency>
    </dependencies>

    2、配置flume

    flume/conf下:

    新建avro.conf 文件内容如下:

    当然skin可以用任何方式,这里我用的是kafka,具体的skin方式可以看官网

    a1.sources=source1
    a1.channels=channel1
    a1.sinks=sink1
    
    a1.sources.source1.type=avro
    a1.sources.source1.bind=192.168.1.163
    a1.sources.source1.port=4141
    a1.sources.source1.channels = channel1
    
    a1.channels.channel1.type=memory
    a1.channels.channel1.capacity=10000
    a1.channels.channel1.transactionCapacity=1000
    a1.channels.channel1.keep-alive=30
    
    a1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink
    a1.sinks.sink1.topic = flumeTest
    a1.sinks.sink1.brokerList = 192.168.1.163:9092
    a1.sinks.sink1.requiredAcks = 0
    a1.sinks.sink1.sink.batchSize = 20
    a1.sinks.sink1.channel = channel1

    如上配置,flume服务器运行在192.163.1.163上,并且监听的端口为4141,在log4j中只需要将日志发送到192.163.1.163的4141端口就能成功的发送到flume上。flume会监听并收集该端口上的数据信息,然后将它转化成kafka event,并发送到kafka集群flumeTest topic下。

    3、启动flume并测试

    1. flume启动命令:bin/flume-ng agent --conf conf --conf-file conf/avro.conf --name a1 -Dflume.root.logger=INFO,console
    2. 运行FlumeTest类的main方法打印日志
    3. 允许Consumer的main方法打印kafka接收到的数据
  • 相关阅读:
    HDU 1452
    POJ 1845
    POJ 2992
    POJ 3358
    POJ 3696
    POJ 3090
    POJ 2478
    2016大连网络赛 Football Games
    2016大连网络赛 Function
    2016大连网络赛 Sparse Graph
  • 原文地址:https://www.cnblogs.com/dreammyle/p/6595693.html
Copyright © 2011-2022 走看看