zoukankan      html  css  js  c++  java
  • 1030 Travel Plan (30分)

    A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤) is the number of cities (and hence the cities are numbered from 0 to N1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

    City1 City2 Distance Cost
     

    where the numbers are all integers no more than 500, and are separated by a space.

    Output Specification:

    For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

    Sample Input:

    4 5 0 3
    0 1 1 20
    1 3 2 30
    0 3 4 10
    0 2 2 20
    2 3 1 20
     

    Sample Output:

    0 2 3 3 40
     
     题解:
    直接使用dijkstra找出最短并且花费最少的路径
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1010;
    #define inf 0x3fffffff
    int G[maxn][maxn];
    int GP[maxn][maxn];//记录每条路的花费
    int path[maxn];
    bool collected[maxn];
    int dist[maxn];//源点到该点的最短距离
    int price[maxn];//记录源点到该点的花费
    int n,m,s,d;
    void dijkstra(int s){
        dist[s]=0;
        price[s]=0;
        for(int i=0;i<n;i++){
            int v,mind=inf,minv=-1;
            for(int i=0;i<n;i++){
                if(collected[i]==false&&dist[i]<mind){
                    mind=dist[i];
                    minv=i;
                }
            }
            v=minv;
            if(v==-1){
                return ;
            }
            collected[v]=true;
            for(int i=0;i<n;i++){
                if(collected[i]==false&&G[v][i]!=inf){
                    if(dist[v]+G[v][i]<dist[i]){
                        dist[i]=dist[v]+G[v][i];
                        path[i]=v;
                        price[i]=price[v]+GP[v][i];
    //                    printf("%d %d
    ",i,price[i]);
                    }
                    else if(dist[v]+G[v][i]==dist[i]){
                        if(price[v]+GP[v][i]<price[i]){
                            price[i]=GP[v][i]+price[v];
                            path[i]=v;
    //                        printf("%d %d
    ",i,price[i]);
                        }
                    }
                }
            }
        }
    }
    int main(){
        fill(dist,dist+maxn,inf);
        fill(GP[0],GP[0]+maxn*maxn,inf);
        fill(path,path+maxn,-1);
        fill(collected,collected+maxn,false);
        fill(price,price+maxn,inf);
        fill(G[0],G[0]+maxn*maxn,inf);
        scanf("%d %d %d %d",&n,&m,&s,&d);
        for(int i=0;i<m;i++){
            int a,b,c,e;
            scanf("%d %d %d %d",&a,&b,&c,&e);
            G[a][b]=c;
            G[b][a]=c;
            GP[a][b]=e;
            GP[b][a]=e;
        }
        dijkstra(s);
        int k[maxn];
        int i=1;
        k[0]=d;
        int g=d;
        while(path[g]!=-1){
            k[i]=path[g];
            g=path[g];
            i++;
        }
        int sumPath=0;
        for(int j=i-1;j>0;j--){
            sumPath+=G[k[j]][k[j-1]];
        }
        for(int j=i-1;j>=0;j--){
            printf("%d ",k[j]);
        }
        printf("%d ",sumPath);
        printf("%d
    ",price[d]);
        return 0;
    }
     
  • 相关阅读:
    Informix日期获取上周上月昨天去年SQL
    Oracle-创建一个DBLink的方法
    Kafka-Partitions与Replication Factor 调整准则
    Linux-删除文件空间不释放问题解决
    Redhat7-Oracle-sqlldr-安装配置
    Centos7-安装oracle客户端11.2.0.4
    Centos7-单机安装jumpserver
    Redhat6.4-yum本地源安装配置
    Linux-zip unzip 命令日常使用
    xxl-job日志
  • 原文地址:https://www.cnblogs.com/dreamzj/p/14359845.html
Copyright © 2011-2022 走看看