zoukankan      html  css  js  c++  java
  • 1150 Travelling Salesman Problem (25) 图

    The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

    In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

    C1​​ C2​​ ... Cn​​

    where n is the number of cities in the list, and Ci​​'s are the cities on a path.

    Output Specification:

    For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

    • TS simple cycle if it is a simple cycle that visits every city;
    • TS cycle if it is a cycle that visits every city, but not a simple cycle;
    • Not a TS cycle if it is NOT a cycle that visits every city.

    Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

    Sample Input:

    6 10
    6 2 1
    3 4 1
    1 5 1
    2 5 1
    3 1 8
    4 1 6
    1 6 1
    6 3 1
    1 2 1
    4 5 1
    7
    7 5 1 4 3 6 2 5
    7 6 1 3 4 5 2 6
    6 5 1 4 3 6 2
    9 6 2 1 6 3 4 5 2 6
    4 1 2 5 1
    7 6 1 2 5 4 3 1
    7 6 3 2 5 4 1 6
     

    Sample Output:

    Path 1: 11 (TS simple cycle)
    Path 2: 13 (TS simple cycle)
    Path 3: 10 (Not a TS cycle)
    Path 4: 8 (TS cycle)
    Path 5: 3 (Not a TS cycle)
    Path 6: 13 (Not a TS cycle)
    Path 7: NA (Not a TS cycle)
    Shortest Dist(4) = 8

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1010;
    #define  inf  0x3fffffff
    int e[maxn][maxn],cns=inf,cnsid=-1,n,m,k;;
    //set<int> s;
    //vector<int> v;
    void check(int dex){
        int kk,flag=1,sum=0;
        scanf("%d",&kk);
        set<int> s;
        vector<int> v(kk);
        for(int i=0;i<kk;i++){
            scanf("%d",&v[i]);
            s.insert(v[i]);
        }
        for(int i=0;i<kk-1;i++){
            if(e[v[i]][v[i+1]]==inf){
                flag=0;
            }
            sum+=e[v[i]][v[i+1]];
        }
        if(flag==0){
            printf("Path %d: NA (Not a TS cycle)
    ",dex);
        }
        else if(s.size()!=n||v[0]!=v[kk-1]){//注:写成s.size()<n不行
            printf("Path %d: %d (Not a TS cycle)
    ",dex,sum);
        }
        else if(s.size()==n&&v[0]!=v[kk-1]){
              printf("Path %d: %d (TS cycle)
    ",dex,sum);
        }
        else if(s.size()==n&&v[0]==v[kk-1]){
            if(kk>n+1){
                printf("Path %d: %d (TS cycle)
    ",dex,sum);
            }
            else{
                printf("Path %d: %d (TS simple cycle)
    ",dex,sum);
            }
        }
        if(flag==1&&s.size()==n&&sum<cns){
            cns=sum;
            cnsid=dex;
        }
    }
    int main(){
        fill(e[0],e[0]+maxn*maxn,inf);
        scanf("%d %d",&n,&m);
        for(int i=0;i<m;i++){
            int a,b,c;
            scanf("%d %d %d",&a,&b,&c);
            e[a][b]=e[b][a]=c;
        }
        scanf("%d",&k);
        for(int i=1;i<=k;i++){
            check(i);
        }
        printf("Shortest Dist(%d) = %d
    ",cnsid,cns);
        return 0;
    }
     
  • 相关阅读:
    Alcatraz的安装和使用
    TableView didSelectRowAtIndexPath 不执行
    iphone6 plus 为什么打印出的宽度是375
    GCD的同步异步串行并行、NSOperation和NSOperationQueue一级用dispatch_once实现单例
    strcmp传入nil导致崩溃
    修改工程名称
    Mac OS X 系统12个常用的文本编辑快捷键(移动、选中)
    删除配置文件解决OS X各种WiFi无法连接的顽固问题,解决MAC无法连接wif的情况 Preferences
    textViewDidChange: crashes in iOS 7
    iOS7隐藏状态栏 statusBar
  • 原文地址:https://www.cnblogs.com/dreamzj/p/14427360.html
Copyright © 2011-2022 走看看