Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9
#include<bits/stdc++.h> using namespace std; const int maxn=100010; int pos[maxn]; int main(){ int n,ans=0; scanf("%d",&n); int temp,count=n-1; for(int i=0;i<n;i++){ scanf("%d",&temp); pos[temp]=i; if(temp==i&&temp!=0){ count--; } } int k=1;//存放除0之外的最小需要交换的值 while(count>0){ if(pos[0]==0){ while(k<n){ if(pos[k]!=k){ swap(pos[k],pos[0]); ans++; break; } k++; } } while(pos[0]!=0){ swap(pos[0],pos[pos[0]]);//将0所在位置上的数的位置与0的位置交换 ans++; count--; } } printf("%d ",ans); return 0; }