zoukankan      html  css  js  c++  java
  • 7-3 Safari Park (25 分)

    A safari park(野生动物园)has K species of animals, and is divided into N regions. The managers hope to spread the animals to all the regions, but not the same animals in the two neighboring regions. Of course, they also realize that this is an NP complete problem, you are not expected to solve it. Instead, they have designed several distribution plans. Your job is to write a program to help them tell if a plan is feasible.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives 3 integers: N (0), the number of regions; R (≥), the number of neighboring relations, and K (0), the number of species of animals. The regions and the species are both indexed from 1 to N.

    Then R lines follow, each gives the indices of a pair of neighboring regions, separated by a space.

    Finally there is a positive M (≤) followed by M lines of distribution plans. Each plan gives N indices of species in a line (the i-th index is the animal in the i-th rigion), separated by spaces. It is guaranteed that any pair of neighboring regions must be different, and there is no duplicated neighboring relations.

    Output Specification:

    For each plan, print in a line Yes if no animals in the two neighboring regions are the same, or No otherwise. However, if the number of species given in a plan is not K, you must print Error: Too many species. or Error: Too few species. according to the case.

    Sample Input:

    6 8 3
    2 1
    1 3
    4 6
    2 5
    2 4
    5 4
    5 6
    3 6
    5
    1 2 3 3 1 2
    1 2 3 4 5 6
    4 5 6 6 4 5
    2 3 4 2 3 4
    2 2 2 2 2 2
     

    Sample Output:

    Yes
    Error: Too many species.
    Yes
    No
    Error: Too few species.
     
     
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1010;
    int toInt(string st){
        int sum=0;
        for(int i=0;i<st.size();i++){
            sum=sum*10+(st[i]-'0');
        }
        return sum;
    }
    bool isP(int n){
        if(n<=1){
            return false;
        }
        for(int i=2;i<=sqrt(n);i++){
            if(n%i==0){
                return false;
            }
        }
        return true;
    }
    
    int main(){
        string s,str;
        cin>>s;
        bool flag=true;;
        int len=s.size();
        for(int i=0;i<len;i++){
            str=s.substr(i,len);
            int sum=toInt(str);
            if(isP(sum)){
                printf("%s Yes
    ",str.c_str());
            }
            else{
                printf("%s No
    ",str.c_str());
                flag=false;
            }
        }
        if(flag==true){
            printf("All Prime!
    ");
        }
        return 0;
    }
  • 相关阅读:
    CF1174D Ehab and the Expected XOR Problem
    CF1083B The Fair Nut and Strings
    CF1088D Ehab and another another xor problem
    CF1168A Increasing by Modulo
    CF1166C A Tale of Two Lands
    CF1142A The Beatles
    CF1105D Kilani and the Game
    【uva11248】网络扩容
    【sam复习】用sam实现后缀排序
    【Educational Codeforces Round 19】
  • 原文地址:https://www.cnblogs.com/dreamzj/p/14508829.html
Copyright © 2011-2022 走看看