zoukankan      html  css  js  c++  java
  • 【Unity编程】Unity中关于四元数的API详解

    本文为博主原创文章,欢迎转载,请保留出处:http://blog.csdn.net/andrewfan

    Unity中关于四元数的API详解

    Quaternion类

    Quaternion(四元数)用于计算Unity旋转。它们计算紧凑高效,不受万向节锁的困扰,并且可以很方便快速地进行球面插值。 Unity内部使用四元数来表示所有的旋转。

    Quaternion是基于复数,并不容易直观地理解。 不过你几乎不需要访问或修改单个四元数参数(x,y,z,w); 大多数情况下,你只需要获取和使用现有的旋转(例如来自“Transform”),或者用四元数来构造新的旋转(例如,在两次旋转之间平滑插入)。
    大部分情况下,你可能会使用到这些函数:

    • Quaternion.LookRotation,
    • Quaternion.Angle
    • Quaternion.Euler
    • Quaternion.Slerp
    • Quaternion.FromToRotation
    • Quaternion.identity。

    Quaternion 是一个结构体,本身成员变量相对简单,可以作为函数参数高效传递。

    Unity默认方向

    在深入了解API之前,我们需要先明确一些基本的概念,就是方向、旋转究竟是如何表示的。
    Unity中使用左手坐标系,假如把世界坐标系跟东南西北进行结合起来看,大致如下图所示:

    方向
    默认的方向对应如下表:

    坐标轴 对应方向
    +x 右(东)
    -x 左(西)
    +y
    -y
    +Z 前(北)
    -Z 后(南)

    假设以你自己身体为例,你站立在地面上,面朝北方,此时就是默认方向,也就是Unity中的方向就是面向+Z轴方向,那么此时+X轴在东方,+Y轴对应正上方。此时对应的欧拉角是(0,0,0),此时对应的前方矢量是(0,0,1),上方矢量是(0,1,0)。

    这里我区分了左右上下前后的概念,因为这些概念同时也对应了Vector3类、Transform类中的相应的方向函数。

    方向的表示法

    ①欧拉角表示法

    假如你使用一组欧拉角表示旋转,XYZ三个参数代表相应轴向按照顺归YZX的旋转,因此(0、90、90)代表先进行+Z轴旋转90度,再沿着+Y轴进行90度旋转,更多详细内容可以参考前述文章《【Unity编程】Unity中的欧拉旋转》

    ②前方上方矢量界定法

    编程过程中,大部分需要明确指定方位的时候就需要使用这个方法。要确定一个朝向,我们可以使用两个向量来确定:即前方矢量和上方矢量。当一个朝向的前方和上方确定之后,这个朝向也就完全确定了。
    举例来说,如果现在只提供一个朝向,就是你现在面朝北方,那么这个方向已经完全确定了吗?显然没有。因为你右侧躺在地上,看向北方,还是在面朝北方,这时候就需要另外一个矢量,也就是上方。当给出上方之后,这个朝向就完全确定了。

    上方需要严格给出吗?

    在Unity中,我们很多时候,不需要给出严格的上方朝向。比如,仍然是上面那个例子,如果我面朝北方,先给出(0,0,1)代表我的前方矢量。那么,如果我给出的方向不是严格的上方矢量,比如是(0,0.5,0.5),是否可以?答案也是可以的,因为这两个矢量显然已经确定了一个方向,前方是严格的,而实际的上方可以通过前方朝着你给出的上方矢量旋转90度得出。也就是说,你给(0,1,0)作为上方矢量,和给出在下图中弧度范围内(不包含+Z和-Z)所有方向的矢量都是相同的结果。

    上方矢量参数范围

    ③绕轴旋转界定法

    第三种定义旋转的方法就是围绕某个指定的轴向旋转一定的角度。这个方法也可以确定一个相对旋转,它以从默认方向(此时前方+Z,上方+Y)出发,沿着指定的轴向进行指定角度的旋转,旋转后的前方和上方是确定的。因此这个方法也可以用来确定朝向。

    ④A向到B向相对旋转表示法

    还有一种方法就是从A向到B向的相对旋转,这种表示了一个旋转的相对变化。比如A为(0,1,0),B为(0,0,1),也就是相对旋转量代表原来的上方被旋转到了前方,这样的一个四元数也可以用欧拉角表示成(90,0,0),也就是沿着+X轴旋转了90度。

    注意上面四中表示方法中,有的明确表明了上方矢量,有的好像只明确了前方矢量,要明确的一点就是,它们都是从默认矢量出发的,如果没有明确指定上方朝向,那么就是使用默认的上方,也就是+Y方向。

    成员变量

    • eulerAngles 欧拉角,返回当前四元数所对应的欧拉角
    • this[int] 可以使用类似数组和下标的形式从四元数中获取四个四元数参数
    • x、y、z、w 分别代表x、y、z、w 参数,具体代表的内容可以参考前文《【Unity编程】四元数(Quaternion)与欧拉角》,你最好不要通过修改四个参数来改变四元数,除非你真的非常了解它们的含义。

    静态成员

    • identity 单位四元数,也就是默认的无旋转状态,此时与世界坐标相同,前方指向+Z,上方指向+Y

    成员函数

    函数形式 解释
    void Set(float new_x, float new_y, float new_z, float new_w) 设置x、y、z、w 分量,与this[]功能相同
    void SetFromToRotation(Vector3 fromDirection, Vector3 toDirection) 设置成静态函数FromToRotation的结果
    void SetLookRotation(Vector3 view, Vector3 up = Vector3.up) 设置成静态函数LookRotation的结果
    void ToAngleAxis(out float angle, out Vector3 axis) 设置成静态函数AngleAxis的结果

    说明:成员函数几个set方法多用于将当前四元数设置成目标四元数,目标四元数的构建方法与对应名称的静态函数相同。

    静态函数

    函数形式 解释
    static float Angle(Quaternion a, Quaternion b) 计算两个四元数前方矢量之间的夹角度数
    static Quaternion AngleAxis(float angle, Vector3 axis) 构建一个四元数,它表示沿着一个轴旋转固定角度,即上述表示法③
    static float Dot(Quaternion a, Quaternion b) 计算两个四元数之间的点积,返回一个标量,这个函数一般用不到,它的点积不代表什么具体的物理含义,具体定义方法见我的前述文章
    static Quaternion Euler(float x, float y, float z) 构建一个四元数,它用欧拉旋转表示,即上述表示法①
    static Quaternion FromToRotation(Vector3 fromDirection, Vector3 toDirection) 构建一个四元数,它表示从指向fromDirection方向到指向toDirection方向的相对旋转量,见上述表示法④
    static Quaternion Inverse(Quaternion rotation) 构建一个四元数,它是指定的四元数的逆,也就是逆向旋转,比如原四元数表示相对+X轴旋转了90度,那么此函数结果就是相对+X轴旋转了-90度
    static Quaternion Lerp(Quaternion a, Quaternion b, float t) 构建一个四元数,表示从四元数a到b的球面插值,所谓的插值也就是中间旋转量,从a作为起点,此时对应t为0,到b为终点,此时对应t为1。当t取0-1之间的小数时,就代表了中间的插值结果。这个方法与Slerp相同,计算速度快,但是精度低,如果相对旋转变化量很小,则效果不理想
    static Quaternion LerpUnclamped(Quaternion a, Quaternion b, float t) 与Lerp相同,区别是,Lerp的t值会被钳制在[0,1]之间,而此方法则不会,t允许超出计算
    static Quaternion LookRotation(Vector3 forward, Vector3 upwards = Vector3.up) 构建一个四元数,使用前方上方矢量确定朝向,也就是上述表示法②
    static Quaternion RotateTowards(Quaternion from, Quaternion to, float maxDegreesDelta) 构建一个四元数,表示从一个四元数from(的前方)向着另外一个四元数(的前方)旋转,但不能超出指定的角度,也就是如果两个前方矢量夹角超过指定角度,则旋转到达指定角度时就停止,若是夹角本身不足的话,则结果直接为目标四元数to,与上述表示法④的意思很接近
    static Quaternion Slerp(Quaternion a, Quaternion b, float t) 球面插值,与Lerp功能相同,t值也被钳制,计算精度高,但是速度相对较慢
    static Quaternion SlerpUnclamped(Quaternion a, Quaternion b, float t) 与Slerp功能相同,只是t值不被钳制,允许超出计算
    static Quaternion operator * (Quaternion lhs, Quaternion rhs) 乘法运算符重载,当表示两个连续的旋转时,可以使用lhs * rhs的形式得出连续旋转的结果,lhs为左值,rhs为右值。注意左值是先进行的旋转,叠加右值旋转。用法示例:lhs = lhs * rhs;
    static Vector3 operator *(Quaternion rotation, Vector3 point) 乘法运算符重载,表示对一个矢量point施加旋转rotation,得出旋转后的结果矢量。用法示例:Vector3 result=rotation * point

    验证前方上方矢量表示法

    为了验证前方上方矢量表示法的实际上方会重新计算,我设计了以下小实验。

    小实验

    在场景中设置三个物体,它们的朝向是打乱的,从左到右分别对应1、2、3。可以使用以下代码将三个物体朝向调整为一致。

    
            //前方上方矢量界定法的实际上方会重新计算
            m_t1.transform.rotation = Quaternion.LookRotation(Vector3.forward, Vector3.up);
            m_t2.transform.rotation = Quaternion.LookRotation(Vector3.forward, new Vector3(0,0.5f,-0.5f));
            m_t3.transform.rotation = Quaternion.LookRotation(Vector3.forward, new Vector3(0,0.5f,0.5f));
    
    

    在start方法中执行上述代码后,如下:

    小实验结果

    三个物体朝向是一致的,也就说明了上方矢量确实是进行了重新计算。

    总结几种表示方法

    下面使用代码总结几种表示法,对应同样的四元数,大致有四种表示方法。

            //旋转量的4种表示形式
    
            Quaternion q1=Quaternion.Euler(90, 0, 0);
            Quaternion q2 = Quaternion.LookRotation(Vector3.down ,Vector3.forward);
            Quaternion q3 = Quaternion.AngleAxis(90,Vector3.right);
            Quaternion q4 = Quaternion.FromToRotation(Vector3.up, Vector3.forward);
            showQ("q1",q1);
            showQ("q2",q2);
            showQ("q3",q3);
            showQ("q4",q4);
    
    

    它们的输出结果是:

    几种表示法结果

    也就是说,这几种形式表示的四元数结果完全相同。

    将四元数旋转应用于子弹射击示例

    当枪管转动起来,子弹仍然沿着正确的朝向发射出去,可以使用很简单的几句话,修改之前的代码后如下:

    
                Bullet_2 bullet = m_compPool.takeUnit<Bullet_2>();
                //发射时,将子弹的初始位置为枪口的当前位置
                bullet.m_transform.position = m_transform.position;
                //将子弹的初始化旋转设置为指向当前枪口前方
                bullet.m_transform.rotation = Quaternion.LookRotation(m_transform.forward);
    
    

    旋转射击


    本节代码可点此下载。觉得有用你就点个赞。

  • 相关阅读:
    今天还做了点有意义的事
    读“记当年的公开课”
    无语
    小议如何控制学生机结束学生端多媒体控制平台程序
    今天去了中山
    Windows服务创建及安装
    SQL Server数据库表锁定原理以及如何解除表的锁定示例演示
    本地SQL脚本操作外部服务器结果集
    list.FindAll
    一个高效的数据分页的存储过程 可以轻松应付百万数据
  • 原文地址:https://www.cnblogs.com/driftingclouds/p/6626183.html
Copyright © 2011-2022 走看看