zoukankan      html  css  js  c++  java
  • bzoj3289 Mato的文件管理

    题目

    bzoj3289

    思路

    区间求逆序对
    离散化+莫队+树状数组修改

    代码

    /**************************************************************
        Problem: 3289
        User: 3010651817
        Language: C++
        Result: Accepted
        Time:5716 ms
        Memory:3064 kb
    ****************************************************************/
     
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <cmath>
    #define FOR(i,a,b) for(int i=a;i<=b;++i)
    using namespace std;
    const int maxn = 5e4 + 7;
    const int N = 5e4;
    int read() {
        int x = 0, f = 1; char s = getchar();
        for (; s > '9' || s < '0'; s = getchar()) if (s == '-') f = -1;
        for (; s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
        return x * f;
    }
    struct node {
        int l, r, id, ans;
    } Q[maxn];
    int n, m, a[maxn], b[maxn], sum[maxn << 1], belong[maxn], ans;
    bool cmp1(node a, node b) {return belong[a.l] == belong[b.l] ? a.r < b.r : belong[a.l] < belong[b.l];}
    bool cmp2(node a, node b) {return a.id < b.id;}
    int lowbit(int x) {return x & -x;}
    void update(int x, int ad) {
        for (int i = x; i <= N; i += lowbit(i)) sum[i] += ad;
    }
    int query(int x) {
        int ans = 0;
        for (int i = x; i >= 1; i -= lowbit(i)) ans += sum[i];
        return ans;
    }
    int main() {
        n = read();
        int zz = sqrt(n);
        FOR(i, 1, n) b[i] = a[i] = read();
        sort(b + 1, b + 1 + n);
        FOR(i, 1, n) a[i] = lower_bound(b + 1, b + 1 + n, a[i]) - b;
        FOR(i, 1, n) belong[i] = (i - 1) / zz + 1;
        m = read();
        FOR(i, 1, m) Q[i].l = read(), Q[i].r = read(), Q[i].id = i;
        sort(Q + 1, Q + 1 + m, cmp1);
        int l = 1, r = 0;
        FOR(i, 1, m) {
            while (l < Q[i].l) {update(a[l], -1);ans -= query(a[l] - 1);++l;}
            while (r > Q[i].r) {update(a[r], -1);ans -= r - l - query(a[r]);--r;}
            while (l > Q[i].l) {--l;update(a[l], 1);ans += query(a[l] - 1);}
            while (r < Q[i].r) {++r;update(a[r], 1);ans += r - l + 1 - query(a[r]);}
            Q[i].ans = ans;
        }
        sort(Q + 1, Q + 1 + m, cmp2);
        FOR(i, 1, m) printf("%d
    ", Q[i].ans);
        return 0;
    }
    
  • 相关阅读:
    MFC之CString操作1
    项目之MFC/VC++疑问巩固1
    赖氏经典英语语法—动词
    赖氏经典英语语法—关系词
    2021.07.08-模型预测轨迹生成
    2021.07.07-基于软约束的轨迹优化-实践
    2021.07.03-基于软约束的轨迹优化-地图
    2021.07.05-基于软约束的轨迹优化-理论
    1.轨迹优化-港科大无人车
    TODO-3-关于无人车贝塞尔曲线
  • 原文地址:https://www.cnblogs.com/dsrdsr/p/9829161.html
Copyright © 2011-2022 走看看