zoukankan      html  css  js  c++  java
  • 09.Mapreduce实例——ChainMapReduce小

    09Mapreduce实例——ChainMapReduce

    实验原理

    一些复杂的任务难以用一次MapReduce处理完成,需要多次MapReduce才能完成任务。Hadoop2.0开始MapReduce作业支持链式处理,类似于工厂的的生产线,每一个阶段都有特定的任务要处理,比如提供原配件——>组装——打印出厂日期,等等。通过这样进一步的分工,从而提高了生成效率,我们Hadoop中的链式MapReduce也是如此,这些Mapper可以像水流一样,一级一级向后处理,有点类似于Linux的管道。前一个Mapper的输出结果直接可以作为下一个Mapper的输入,形成一个流水线。

    链式MapReduce的执行规则:整个Job中只能有一个Reducer,在Reducer前面可以有一个或者多个Mapper,在Reducer的后面可以有0个或者多个Mapper。

    Hadoop2.0支持的链式处理MapReduce作业有一下三种:

    (1)顺序链接MapReduce作业

    类似于Unix中的管道:mapreduce-1 | mapreduce-2 | mapreduce-3 ......,每一个阶段创建一个job,并将当前输入路径设为前一个的输出。在最后阶段删除链上生成的中间数据。

    (2)具有复杂依赖的MapReduce链接

    若mapreduce-1处理一个数据集, mapreduce-2 处理另一个数据集,而mapreduce-3对前两个做内部连结。这种情况通过Job和JobControl类管理非线性作业间的依赖。如x.addDependingJob(y)意味着x在y完成前不会启动。

    (3)预处理和后处理的链接

    一般将预处理和后处理写为Mapper任务。可以自己进行链接或使用ChainMapper和ChainReducer类,生成得作业表达式类似于:

    MAP+ | REDUCE | MAP*

    如以下作业: Map1 | Map2 | Reduce | Map3 | Map4,把Map2和Reduce视为MapReduce作业核心。Map1作为前处理,Map3, Map4作为后处理。ChainMapper使用模式:(预处理作业),ChainReducer使用模式:(设置Reducer并添加后处理Mapper)

    本实验中用到的就是第三种作业模式:预处理和后处理的链接,生成得作业表达式类似于 Map1 | Map2 | Reduce | Map3

    1.建表,逗号分隔

    2.本地新建/data/mapreduce10目录。

    mkdir -p /data/mapreduce10

    3.将表上传到虚拟机中

    4.上传并解压hadoop2lib文件

    5.在HDFS上新建/mymapreduce10/in目录,然后将Linux本地/data/mapreduce10目录下的goods_0文件导入到HDFS的/mymapreduce10/in目录中。

    hadoop fs -mkdir -p /mymapreduce10/in  

    hadoop fs -put /data/mapreduce10/goods_0 /mymapreduce10/in  

    6.IDEA中编写Java代码

    package mapreduce9;
    import java.io.IOException;
    import java.net.URI;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
    import org.apache.hadoop.mapreduce.lib.chain.ChainReducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.io.DoubleWritable;
    public class ChainMapReduce {
        private static final String INPUTPATH = "hdfs://192.168.149.10:9000/mymapreduce10/in/goods_0";
        private static final String OUTPUTPATH = "hdfs://192.168.149.10:9000/mymapreduce10/out";
        public static void main(String[] args) {
            try {
                Configuration conf = new Configuration();
                FileSystem fileSystem = FileSystem.get(new URI(OUTPUTPATH), conf);
                if (fileSystem.exists(new Path(OUTPUTPATH))) {
                    fileSystem.delete(new Path(OUTPUTPATH), true);
                }
                Job job = new Job(conf, ChainMapReduce.class.getSimpleName());
                FileInputFormat.addInputPath(job, new Path(INPUTPATH));
                job.setInputFormatClass(TextInputFormat.class);
                ChainMapper.addMapper(job, FilterMapper1.class, LongWritable.class, Text.class, Text.class, DoubleWritable.class, conf);
                ChainMapper.addMapper(job, FilterMapper2.class, Text.class, DoubleWritable.class, Text.class, DoubleWritable.class, conf);
                ChainReducer.setReducer(job, SumReducer.class, Text.class, DoubleWritable.class, Text.class, DoubleWritable.class, conf);
                ChainReducer.addMapper(job, FilterMapper3.class, Text.class, DoubleWritable.class, Text.class, DoubleWritable.class, conf);
                job.setMapOutputKeyClass(Text.class);
                job.setMapOutputValueClass(DoubleWritable.class);
                job.setPartitionerClass(HashPartitioner.class);
                job.setNumReduceTasks(1);
                job.setOutputKeyClass(Text.class);
                job.setOutputValueClass(DoubleWritable.class);
                FileOutputFormat.setOutputPath(job, new Path(OUTPUTPATH));
                job.setOutputFormatClass(TextOutputFormat.class);
                System.exit(job.waitForCompletion(true) ? 0 : 1);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        public static class FilterMapper1 extends Mapper<LongWritable, Text, Text, DoubleWritable> {
            private Text outKey = new Text();
            private DoubleWritable outValue = new DoubleWritable();
            @Override
            protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DoubleWritable>.Context context)
                    throws IOException,InterruptedException {
                String line = value.toString();
                if (line.length() > 0) {
                    String[] splits = line.split(",");
                    double visit = Double.parseDouble(splits[1].trim());
                    if (visit <= 600) {
                        outKey.set(splits[0]);
                        outValue.set(visit);
                        context.write(outKey, outValue);
                    }
                }
            }
        }
        public static class FilterMapper2 extends Mapper<Text, DoubleWritable, Text, DoubleWritable> {
            @Override
            protected void map(Text key, DoubleWritable value, Mapper<Text, DoubleWritable, Text, DoubleWritable>.Context context)
                    throws IOException,InterruptedException {
                if (value.get() < 100) {
                    context.write(key, value);
                }
            }
        }
        public  static class SumReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
            private DoubleWritable outValue = new DoubleWritable();
            @Override
            protected void reduce(Text key, Iterable<DoubleWritable> values, Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context)
                    throws IOException, InterruptedException {
                double sum = 0;
                for (DoubleWritable val : values) {
                    sum += val.get();
                }
                outValue.set(sum);
                context.write(key, outValue);
            }
        }
        public  static class FilterMapper3 extends Mapper<Text, DoubleWritable, Text, DoubleWritable> {
            @Override
            protected void map(Text key, DoubleWritable value, Mapper<Text, DoubleWritable, Text, DoubleWritable>.Context context)
                    throws IOException, InterruptedException {
                if (key.toString().length() < 3) {
                    System.out.println("写出去的内容为:" + key.toString() +"++++"+ value.toString());
                    context.write(key, value);
                }
            }

        }

    }

    7.将hadoop2lib目录中的jar包,拷贝到hadoop2lib目录下。

    8.拷贝log4j.properties文件

    9.运行结果

     

    hadoop fs -ls /mymapreduce10/out  

    hadoop fs -cat /mymapreduce10/out/part-r-00000  

     

  • 相关阅读:
    范仁义js课程---26、循环结构(while循环)
    解决Failed to parse SourceMap: http:xxx 问题
    范仁义js课程---25、switch选择结构
    范仁义js课程---24、条件运算符
    范仁义js课程---23、if选择结构小实例
    范仁义js课程---22、选择结构(if)
    javascript疑难问题---4、NaN的相等性判断
    范仁义js课程---21、js运算符优先级
    android L新控件RecyclerView详解与DeMo[转]
    Color Cube – 国产的优秀配色取色工具
  • 原文地址:https://www.cnblogs.com/dty602511/p/15578762.html
Copyright © 2011-2022 走看看