zoukankan      html  css  js  c++  java
  • 用cython提升python的性能

    Boosting performance with Cython

     
     
    Even with my old pc (AMD Athlon II, 3GB ram), I seldom run into performance issues when running vectorized code. But unfortunately there are plenty of cases where that can not be easily vectorized, for example the drawdown function. My implementation of such was extremely slow, so I decided to use it as a test case for speeding things up. I'll be using the SPY timeseries with ~5k samples as test data. Here comes the original version of my drawdown function (as it is now implemented in the TradingWithPython library) 
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    def drawdown(pnl):
        """
        calculate max drawdown and duration
     
        Returns:
            drawdown : vector of drawdwon values
            duration : vector of drawdown duration
        """
        cumret = pnl
     
        highwatermark = [0]
     
        idx = pnl.index
        drawdown = pd.Series(index = idx)
        drawdowndur = pd.Series(index = idx)
     
        for t in range(1, len(idx)) :
            highwatermark.append(max(highwatermark[t-1], cumret[t]))
            drawdown[t]= (highwatermark[t]-cumret[t])
            drawdowndur[t]= (0 if drawdown[t] == 0 else drawdowndur[t-1]+1)
     
        return drawdown, drawdowndur
     
    %timeit drawdown(spy)
    1 loops, best of 3: 1.21 s per loop
    Hmm 1.2 seconds is not too speedy for such a simple function. There are some things here that could be a great drag to performance, such as a list *highwatermark* that is being appended on each loop iteration. Accessing Series by their index should also involve some processing that is not strictly necesarry. Let's take a look at what happens when this function is rewritten to work with numpy data 
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    def dd(s):
    #    ''' simple drawdown function '''
         
        highwatermark = np.zeros(len(s))
        drawdown = np.zeros(len(s))
        drawdowndur = np.zeros(len(s))
     
      
        for t in range(1,len(s)):
            highwatermark[t] = max(highwatermark[t-1], s[t])
            drawdown[t] = (highwatermark[t]-s[t])
            drawdowndur[t]= (0 if drawdown[t] == 0 else drawdowndur[t-1]+1)
            
          
        return drawdown , drawdowndur
     
    %timeit dd(spy.values)
    10 loops, best of 3: 27.9 ms per loop
    Well, this is much faster than the original function, approximately 40x speed increase. Still there is much room for improvement by moving to compiled code with cython Now I rewrite the dd function from above, but using optimisation tips that I've found on the cython tutorial .
    duanqs
  • 相关阅读:
    写接口注意事项
    django-redis缓存
    ubuntu 16.04 ssh免密码连接不上
    ubuntu 16.04 配置静态ip 后默认的网卡eno1变成eth0了不能联网的问题解决
    ubuntu 16.04在真实机安装后的静态ip的配置
    ubuntu 16.04 静态ip的配置
    大数据Web可视化分析系统开发
    Structrued Streaming业务数据实时分析
    Spark Streaming实时数据分析
    Spark SQL快速离线数据分析
  • 原文地址:https://www.cnblogs.com/duan-qs/p/5746333.html
Copyright © 2011-2022 走看看