Problem Description
A Fibonacci sequence is calculated by adding the previous two members the sequence, with the first two members being both 1.
F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4)
Your task is to take a number as input, and print that Fibonacci number.
F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4)
Your task is to take a number as input, and print that Fibonacci number.
Input
Each line will contain an integers. Process to end of file.
Output
For each case, output the result in a line.
Sample Input
100
Sample Output
4203968145672990846840663646
Note:
No generated Fibonacci number in excess of 2005 digits will be in the test data, ie. F(20) = 66526 has 5 digits.
高精度加法,用结构体实现,先打表,节省时间,代码如下:
#include<stdio.h> struct bignum{ int s[710]; int l; }f[8011]; int m=10000; bignum operator+(bignum a,bignum b)//a=a+b { int i,d=0; if(b.l<a.l) b.l=a.l; for(i=0;i<b.l;i++) { b.s[i]+=d+a.s[i]; d=b.s[i]/m; b.s[i]%=m; } if(d) b.s[b.l]=d,b.l++; return b; } void print(bignum a)//打印大数据的数组 { printf("%d",a.s[a.l-1]); for(int i=a.l-2;i>=0;i--) printf("%04d",a.s[i]); printf(" "); } int main() { int i,n; f[1].s[0]=f[2].s[0]=f[3].s[0]=f[4].s[0]=1; f[1].l=f[2].l=f[3].l=f[4].l=1; for(i=5;i<=8000;i++) f[i]=f[i-1]+f[i-2]+f[i-3]+f[i-4]; while(scanf("%d",&n)!=EOF) { print(f[n]); } return 0; }