zoukankan      html  css  js  c++  java
  • HDFS的介绍

    设计思想

    • 分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;
    • 在大数据系统中作用:为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务
    • 重点概念:文件切块,副本存放,元数据

    HDSF的重要特性 

    首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

     其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

    重要特性如下:

    (1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

    (2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

    (3)目录结构及文件分块信息(元数据)的管理由namenode节点承担

    ——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)

    (4)文件的各个block的存储管理由datanode节点承担

    ---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)

    (5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改

    (注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)

    HDFS基本操作

    HDFS提供shell命令行客户端,使用方法如下:

    hadoop    fs -ls /

    HDFS客户端支持的命令参数

    [-appendToFile <localsrc> ... <dst>]

            [-cat [-ignoreCrc] <src> ...]

            [-checksum <src> ...]

            [-chgrp [-R] GROUP PATH...]

            [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

            [-chown [-R] [OWNER][:[GROUP]] PATH...]

            [-copyFromLocal [-f] [-p] <localsrc> ... <dst>]

            [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

            [-count [-q] <path> ...]

            [-cp [-f] [-p] <src> ... <dst>]

            [-createSnapshot <snapshotDir> [<snapshotName>]]

            [-deleteSnapshot <snapshotDir> <snapshotName>]

            [-df [-h] [<path> ...]]

            [-du [-s] [-h] <path> ...]

            [-expunge]

            [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

            [-getfacl [-R] <path>]

            [-getmerge [-nl] <src> <localdst>]

            [-help [cmd ...]]

            [-ls [-d] [-h] [-R] [<path> ...]]

            [-mkdir [-p] <path> ...]

            [-moveFromLocal <localsrc> ... <dst>]

            [-moveToLocal <src> <localdst>]

            [-mv <src> ... <dst>]

            [-put [-f] [-p] <localsrc> ... <dst>]

            [-renameSnapshot <snapshotDir> <oldName> <newName>]

            [-rm [-f] [-r|-R] [-skipTrash] <src> ...]

            [-rmdir [--ignore-fail-on-non-empty] <dir> ...]

            [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]

            [-setrep [-R] [-w] <rep> <path> ...]

            [-stat [format] <path> ...]

            [-tail [-f] <file>]

            [-test -[defsz] <path>]

            [-text [-ignoreCrc] <src> ...]

            [-touchz <path> ...]

            [-usage [cmd ...]]

    常用命令参数介绍

    -help             

    功能:输出这个命令参数手册

    -ls                  

    功能:显示目录信息

    示例: hadoop fs -ls hdfs://hadoop-server01:9000/

    备注:这些参数中,所有的hdfs路径都可以简写

    -->hadoop fs -ls /   等同于上一条命令的效果

    -mkdir              

    功能:在hdfs上创建目录

    示例:hadoop fs  -mkdir  -p  /aaa/bbb/cc/dd

    -moveFromLocal            

    功能:从本地剪切粘贴到hdfs

    示例:hadoop  fs  - moveFromLocal  /home/hadoop/a.txt  /aaa/bbb/cc/dd

    -moveToLocal              

    功能:从hdfs剪切粘贴到本地

    示例:hadoop  fs  - moveToLocal   /aaa/bbb/cc/dd  /home/hadoop/a.txt

    --appendToFile  

    功能:追加一个文件到已经存在的文件末尾

    示例:hadoop  fs  -appendToFile  ./hello.txt  hdfs://hadoop-server01:9000/hello.txt

    可以简写为:

    Hadoop  fs  -appendToFile  ./hello.txt  /hello.txt

    -cat  

    功能:显示文件内容  

    示例:hadoop fs -cat  /hello.txt

    -tail                 

    功能:显示一个文件的末尾

    示例:hadoop  fs  -tail  /weblog/access_log.1

    -text                  

    功能:以字符形式打印一个文件的内容

    示例:hadoop  fs  -text  /weblog/access_log.1

    -chgrp

    -chmod

    -chown

    功能:linux文件系统中的用法一样,对文件所属权限

    示例:

    hadoop  fs  -chmod  666  /hello.txt

    hadoop  fs  -chown  someuser:somegrp   /hello.txt

    -copyFromLocal    

    功能:从本地文件系统中拷贝文件到hdfs路径去

    示例:hadoop  fs  -copyFromLocal  ./jdk.tar.gz  /aaa/

    -copyToLocal      

    功能:从hdfs拷贝到本地

    示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz

    -cp              

    功能:从hdfs的一个路径拷贝hdfs的另一个路径

    示例: hadoop  fs  -cp  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

    -mv                     

    功能:在hdfs目录中移动文件

    示例: hadoop  fs  -mv  /aaa/jdk.tar.gz  /

    -get              

    功能:等同于copyToLocal,就是从hdfs下载文件到本地

    示例:hadoop fs -get  /aaa/jdk.tar.gz

    -getmerge             

    功能:合并下载多个文件

    示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...

    hadoop fs -getmerge /aaa/log.* ./log.sum

    -put                

    功能:等同于copyFromLocal

    示例:hadoop  fs  -put  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

    -rm                

    功能:删除文件或文件夹

    示例:hadoop fs -rm -r /aaa/bbb/

    -rmdir                 

    功能:删除空目录

    示例:hadoop  fs  -rmdir   /aaa/bbb/ccc

    -df               

    功能:统计文件系统的可用空间信息

    示例:hadoop  fs  -df  -h  /

    -du

    功能:统计文件夹的大小信息

    示例:

    hadoop  fs  -du  -s  -h /aaa/*

    -count         

    功能:统计一个指定目录下的文件节点数量

    示例:hadoop fs -count /aaa/

    -setrep                

    功能:设置hdfs中文件的副本数量

    示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz

    HDFS的工作原理

    概要

    1. HDFS集群分为两大角色:NameNode、DataNode  (Secondary Namenode)

    2. NameNode负责管理整个文件系统的元数据

    3. DataNode 负责管理用户的文件数据块

    4. 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上

    5. 每一个文件块可以有多个副本,并存放在不同的datanode上

    6. Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量

    7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

    HDFS写数据流程

        客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,

    并由接收到block的datanode负责向其他datanode复制block的副本

    详细步骤解析

    1、根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在

    2、namenode返回是否可以上传

    3、client请求第一个 block该传输到哪些datanode服务器上

    4、namenode返回3个datanode服务器ABC

    5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端

    6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答

    7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。

    HDFS读数据流程

        客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,

    客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件

    1、跟namenode通信查询元数据,找到文件块所在的datanode服务器

    2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流

    3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)

    4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件

     NAMENODE工作机制

    问题场景:

    1、集群启动后,可以查看文件,但是上传文件时报错,打开web页面可看到namenode正处于safemode状态,怎么处理?

    2、Namenode服务器的磁盘故障导致namenode宕机,如何挽救集群及数据?

    3、Namenode是否可以有多个?namenode内存要配置多大?namenode跟集群数据存储能力有关系吗?

    4、文件的blocksize究竟调大好还是调小好?

    ……

    诸如此类问题的回答,都需要基于对namenode自身的工作原理的深刻理解

    NAMENODE职责:

    负责客户端请求的响应

    元数据的管理(查询,修改)

     元数据管理

    namenode对数据的管理采用了三种存储形式:

    内存元数据(NameSystem)

    磁盘元数据镜像文件

    数据操作日志文件(可通过日志运算出元数据)

    元数据存储机制

    A、内存中有一份完整的元数据(内存meta data)

    B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)

    C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中

    元数据的checkpoint

    每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)

    checkpoint操作的触发条件配置参数

    dfs.namenode.checkpoint.check.period=60  #检查触发条件是否满足的频率,60秒

    dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary

    #以上两个参数做checkpoint操作时,secondary namenode的本地工作目录

    dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}

    dfs.namenode.checkpoint.max-retries=3  #最大重试次数

    dfs.namenode.checkpoint.period=3600  #两次checkpoint之间的时间间隔3600秒

    dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录

    checkpoint的附带作用

        namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,

    可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据

    元数据目录说明

    在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:

    $HADOOP_HOME/bin/hdfs namenode -format

    格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构

    current/

    |-- VERSION

    |-- edits_*

    |-- fsimage_0000000000008547077

    |-- fsimage_0000000000008547077.md5

    `-- seen_txid

    其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:

    <property>

      <name>dfs.name.dir</name>

      <value>file://${hadoop.tmp.dir}/dfs/name</value>

    </property>

    hadoop.tmp.dir是在core-site.xml中配置的,默认值如下

    <property>

      <name>hadoop.tmp.dir</name>

      <value>/tmp/hadoop-${user.name}</value>

      <description>A base for other temporary directories.</description>

    </property>

    dfs.namenode.name.dir属性可以配置多个目录,

    如/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,....。各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
    下面对$dfs.namenode.name.dir/current/目录下的文件进行解释。
    1、VERSION文件是Java属性文件,内容大致如下:

    #Fri Nov 15 19:47:46 CST 2013

    namespaceID=934548976

    clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196

    cTime=0

    storageType=NAME_NODE

    blockpoolID=BP-893790215-192.168.24.72-1383809616115

    layoutVersion=-47

    其中
      (1)、namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的;
      (2)、storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE);
      (3)、cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
      (4)、layoutVersion表示HDFS永久性数据结构的版本信息, 只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
      (5)、clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明

    a、使用如下命令格式化一个Namenode:

    $HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]

    选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。

    b、使用如下命令格式化其他Namenode:

     $HADOOP_HOME/bin/hdfs namenode -format -clusterId <cluster_id>

    c、升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:

    $HADOOP_PREFIX_HOME/bin/hdfs start namenode --config $HADOOP_CONF_DIR  -upgrade -clusterId <cluster_ID>

    如果没有提供ClusterID,则会自动生成一个ClusterID。

      (6)、blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。
      
    2、$dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑edits_0000001~到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。

    3、$dfs.namenode.name.dir/current目录下在format的同时也会生成fsimage和edits文件,及其对应的md5校验文件。

    补充:seen_txid

    文件中记录的是edits滚动的序号,每次重启namenode时,namenode就知道要将哪些edits进行加载edits

    DATANODE的工作机制

    问题场景:

    1、集群容量不够,怎么扩容?

    2、如果有一些datanode宕机,该怎么办?

    3、datanode明明已启动,但是集群中的可用datanode列表中就是没有,怎么办?

    以上这类问题的解答,有赖于对datanode工作机制的深刻理解

    Datanode工作职责:

    存储管理用户的文件块数据

    定期向namenode汇报自身所持有的block信息(通过心跳信息上报)

    (这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)

    <property>

    <name>dfs.blockreport.intervalMsec</name>

    <value>3600000</value>

    <description>Determines block reporting interval in milliseconds.</description>

    </property>

    2、Datanode掉线判断时限参数

    datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:

    timeout  = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。

    而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。

    需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。

    <property>

            <name>heartbeat.recheck.interval</name>

            <value>2000</value>

    </property>

    <property>

            <name>dfs.heartbeat.interval</name>

            <value>1</value>

    </property>

    观察验证DATANODE功能

    上传一个文件,观察文件的block具体的物理存放情况:

    在每一台datanode机器上的这个目录中能找到文件的切块:

    /home/hadoop/app/hadoop-2.4.1/tmp/dfs/data/current/BP-193442119-192.168.2.120-1432457733977/current/finalized

  • 相关阅读:
    扑克牌顺子
    反转字符串
    左旋转字符串
    和为S的两个数
    C++中substr()详解
    STL库中的equal_range()
    和为S的连续正序列
    数组中只出现一次的数
    二叉树的深度
    mysql找安装路经,更改密码
  • 原文地址:https://www.cnblogs.com/duan2/p/7486933.html
Copyright © 2011-2022 走看看