zoukankan      html  css  js  c++  java
  • 阻塞队列之七:DelayQueue延时队列

    一、DelayQueue简介

      是一个无界的BlockingQueue,用于放置实现了Delayed接口的对象,其中的对象只能在其到期时才能从队列中取走。这种队列是有序的(PriorityQueue实际存放Delayed接口对象),即队头对象的延迟到期时间最短(队列顶端总是最小的元素)。注意:不能将null元素放置到这种队列中。

      DelayQueue在poll/take的时候,队列中元素会判定这个elment有没有达到超时时间,如果没有达到,poll返回null,而take进入等待状态。但是,除了这两个方法,队列中的元素会被当做正常的元素来对待。例如,size方法返回所有元素的数量,而不管它们有没有达到超时时间。而协调的Condition available只对take和poll是有意义的。

    二、DelayQueue源码分析

    2.1、DelayQueue的lock

    DelayQueue使用一个可重入锁和这个锁生成的一个条件对象进行并发控制。

        private final transient ReentrantLock lock = new ReentrantLock();
    //内部用于存储对象
    private final PriorityQueue<E> q = new PriorityQueue<E>(); /** * Thread designated to wait for the element at the head of * the queue. This variant of the Leader-Follower pattern * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to * minimize unnecessary timed waiting. When a thread becomes * the leader, it waits only for the next delay to elapse, but * other threads await indefinitely. The leader thread must * signal some other thread before returning from take() or * poll(...), unless some other thread becomes leader in the * interim. Whenever the head of the queue is replaced with * an element with an earlier expiration time, the leader * field is invalidated by being reset to null, and some * waiting thread, but not necessarily the current leader, is * signalled. So waiting threads must be prepared to acquire * and lose leadership while waiting. */ private Thread leader = null; /** * Condition signalled when a newer element becomes available * at the head of the queue or a new thread may need to * become leader. */ private final Condition available = lock.newCondition();

    2.2、成员变量

    要先了解下DelayQueue中用到的几个关键对象:

    2.2.1、Delayed, 一种混合风格的接口,用来标记那些应该在给定延迟时间之后执行的对象。

    此接口的实现必须定义一个 compareTo()方法,该方法提供与此接口的 getDelay()方法一致的排序。

    public class DelayQueue<E extends Delayed> extends AbstractQueue<E>
        implements BlockingQueue<E> {

    DelayQueue是一个BlockingQueue,其泛型类的参数是Delayed接口对象。

    Delayed接口:

    public interface Delayed extends Comparable<Delayed> {
         long getDelay(TimeUnit unit);   //返回与此对象相关的剩余延迟时间,以给定的时间单位表示。
    }

    Comparable接口:

    public interface Comparable<T> {
        public int compareTo(T o);
    }

    Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。

    2.2.2、PriorityQueue,优先级队列存放有序对象

    优先队列的比较基准值是时间。详解见《阻塞队列之八:PriorityBlockingQueue优先队列

    DelayQueue的关键元素BlockingQueue、PriorityQueue、Delayed。可以这么说,DelayQueue是一个使用优先队列(PriorityQueue)实现的BlockingQueue,优先队列的比较基准值是时间。

    public class DelayQueue<E extends Delayed> implements BlockingQueue<E> { 
        private final PriorityQueue<E> q = new PriorityQueue<E>();
    }

    总结:DelayQueue内部是使用PriorityQueue实现的,DelayQueue = BlockingQueue + PriorityQueue + Delayed。

    2.3、构造函数

        public DelayQueue() {}    
        
        public DelayQueue(Collection<? extends E> c) {
            this.addAll(c);
        }
        public boolean offer(E e, long timeout, TimeUnit unit) {
            return offer(e);
        }

    超时的参数被忽略,因为是无界的。不会阻塞或超时。

    2.4、入队

        public boolean add(E e) {
            return offer(e);
        }
        public void put(E e) {
            offer(e);
        }
        public boolean offer(E e) {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                q.offer(e);
                if (q.peek() == e) {//添加元素后peek还是e,重置leader,通知条件队列 
                    leader = null;
                    available.signal();
                }
                return true;
            } finally {
                lock.unlock();
            }
        }

    2.5、出队

    public E poll() {  
        final ReentrantLock lock = this.lock;  
        lock.lock();  
        try {  
            E first = q.peek();  
            if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0) //队列为空或者延迟时间未过期  
                return null;  
            else  
                return q.poll();  
        } finally {  
            lock.unlock();  
        }  
    }  
      
    /** 
     * take元素,元素未过期需要阻塞 
     */  
    public E take() throws InterruptedException {  
        final ReentrantLock lock = this.lock;  
        lock.lockInterruptibly();  
        try {  
            for (;;) {  
                E first = q.peek();  
                if (first == null)  
                    available.await(); //队列空,加入条件队列  
                else {  
                    long delay = first.getDelay(TimeUnit.NANOSECONDS); //获取剩余延迟时间  
                    if (delay <= 0) //小于0,那就poll元素  
                        return q.poll();  
                    else if (leader != null) //有延迟,检查leader,不为空说明有其他线程在等待,那就加入条件队列  
                        available.await();  
                    else {   
                        Thread thisThread = Thread.currentThread();  
                        leader = thisThread; //设置当前为leader等待  
                        try {  
                            available.awaitNanos(delay); //条件队列等待指定时间  
                        } finally {  
                            if (leader == thisThread) //检查是否被其他线程改变,没有就重置,再次循环  
                                leader = null;  
                        }  
                    }  
                }  
            }  
        } finally {  
            if (leader == null && q.peek() != null) //leader为空并且队列不空,说明没有其他线程在等待,那就通知条件队列  
                available.signal();  
            lock.unlock();  
        }  
    }  
      
    /** 
     * 响应超时的poll 
     */  
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {  
        long nanos = unit.toNanos(timeout);  
        final ReentrantLock lock = this.lock;  
        lock.lockInterruptibly();  
        try {  
            for (;;) {  
                E first = q.peek();  
                if (first == null) {  
                    if (nanos <= 0)  
                        return null;  
                    else  
                        nanos = available.awaitNanos(nanos);  
                } else {  
                    long delay = first.getDelay(TimeUnit.NANOSECONDS);  
                    if (delay <= 0)  
                        return q.poll();  
                    if (nanos <= 0)  
                        return null;  
                    if (nanos < delay || leader != null)  
                        nanos = available.awaitNanos(nanos);  
                    else {  
                        Thread thisThread = Thread.currentThread();  
                        leader = thisThread;  
                        try {  
                            long timeLeft = available.awaitNanos(delay);  
                            nanos -= delay - timeLeft;  
                        } finally {  
                            if (leader == thisThread)  
                                leader = null;  
                        }  
                    }  
                }  
            }  
        } finally {  
            if (leader == null && q.peek() != null)  
                available.signal();  
            lock.unlock();  
        }  
    }  
      
    /** 
     * 获取queue[0],peek是不移除的 
     */  
    public E peek() {  
        final ReentrantLock lock = this.lock;  
        lock.lock();  
        try {  
            return q.peek();  
        } finally {  
            lock.unlock();  
        }  
    }  

    三、JDK或开源框架中使用

    ScheduledThreadPoolExecutor中使用了DelayedWorkQueue。

    应用场景

    下面的应用场景是来源于网上,虽然借用DelayedQueue可以快速找到要“失效”的对象,但DelayedQueue内部的PriorityQueue的(插入、删除时的排序)也耗费资源。

    a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。
    b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。
    c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。
    d)session超时管理,网络应答通讯协议的请求超时处理。

    四、示例

    1、缓存示例

    1. 当向缓存中添加key-value对时,如果这个key在缓存中存在并且还没有过期,需要用这个key对应的新过期时间
    2. 为了能够让DelayQueue将其已保存的key删除,需要重写实现Delayed接口添加到DelayQueue的DelayedItem的hashCode函数和equals函数
    3. 当缓存关闭,监控程序也应关闭,因而监控线程应当用守护线程

    以下是Sample,是一个缓存的简单实现。共包括三个类Pair、DelayItem、Cache。如下:

    package com.dxz.concurrent.delayqueue;
    
    public class Pair<K, V> {
        public K key;
    
        public V value;
    
        public Pair() {
        }
    
        public Pair(K first, V second) {
            this.key = first;
            this.value = second;
        }
    
        @Override
        public String toString() {
            return "Pair [key=" + key + ", value=" + value + "]";
        }
        
    }

    以下是Delayed的实现

    package com.dxz.concurrent.delayqueue;
    
    import java.util.concurrent.Delayed;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicLong;
    
    public class DelayItem<T> implements Delayed {
        /** Base of nanosecond timings, to avoid wrapping */
        private static final long NANO_ORIGIN = System.nanoTime();
    
        /**
         * Returns nanosecond time offset by origin
         */
        final static long now() {
            return System.nanoTime() - NANO_ORIGIN;
        }
    
        /**
         * Sequence number to break scheduling ties, and in turn to guarantee FIFO
         * order among tied entries.
         */
        private static final AtomicLong sequencer = new AtomicLong(0);
    
        /** Sequence number to break ties FIFO */
        private final long sequenceNumber;
    
        /** The time the task is enabled to execute in nanoTime units */
        private final long time;
    
        private final T item;
    
        public DelayItem(T submit, long timeout) {
            this.time = now() + timeout;
            this.item = submit;
            this.sequenceNumber = sequencer.getAndIncrement();
        }
    
        public T getItem() {
            return this.item;
        }
    
        public long getDelay(TimeUnit unit) {
            long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);
            return d;
        }
    
        public int compareTo(Delayed other) {
            if (other == this) // compare zero ONLY if same object
                return 0;
            if (other instanceof DelayItem) {
                DelayItem x = (DelayItem) other;
                long diff = time - x.time;
                if (diff < 0)
                    return -1;
                else if (diff > 0)
                    return 1;
                else if (sequenceNumber < x.sequenceNumber)
                    return -1;
                else
                    return 1;
            }
            long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS));
            return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
        }
    }

    以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。

    package com.dxz.concurrent.delayqueue;
    
    import java.util.concurrent.ConcurrentHashMap;
    import java.util.concurrent.ConcurrentMap;
    import java.util.concurrent.DelayQueue;
    import java.util.concurrent.TimeUnit;
    import java.util.logging.Level;
    import java.util.logging.Logger;
    
    public class Cache<K, V> {
        private static final Logger LOG = Logger.getLogger(Cache.class.getName());
    
        private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>();
    
        private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>();
    
        private Thread daemonThread;
    
        public Cache() {
    
            Runnable daemonTask = new Runnable() {
                public void run() {
                    daemonCheck();
                }
            };
    
            daemonThread = new Thread(daemonTask);
            daemonThread.setDaemon(true);
            daemonThread.setName("Cache Daemon");
            daemonThread.start();
        }
    
        private void daemonCheck() {
    
            if (LOG.isLoggable(Level.INFO))
                LOG.info("cache service started.");
    
            for (;;) {
                try {
                    DelayItem<Pair<K, V>> delayItem = q.take();
                    if (delayItem != null) {
                        // 超时对象处理
                        Pair<K, V> pair = delayItem.getItem();
                        cacheObjMap.remove(pair.key, pair.value); // compare and
                                                                        // remove
                    }
                } catch (InterruptedException e) {
                    if (LOG.isLoggable(Level.SEVERE))
                        LOG.log(Level.SEVERE, e.getMessage(), e);
                    break;
                }
            }
    
            if (LOG.isLoggable(Level.INFO))
                LOG.info("cache service stopped.");
        }
    
        // 添加缓存对象
        public void put(K key, V value, long time, TimeUnit unit) {
            V oldValue = cacheObjMap.put(key, value);
            if (oldValue != null) {
                boolean result = q.remove(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, oldValue), 0L));
                System.out.println("remove:="+result);
            }
                
    
            long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit);
            q.put(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime));
        }
    
        public V get(K key) {
            return cacheObjMap.get(key);
        }
    
        public DelayQueue<DelayItem<Pair<K, V>>> getQ() {
            return q;
        }
    
        public void setQ(DelayQueue<DelayItem<Pair<K, V>>> q) {
            this.q = q;
        }
    
        // 测试入口函数
        public static void main(String[] args) throws Exception {
            Cache<Integer, String> cache = new Cache<Integer, String>();
            cache.put(1, "aaaa", 60, TimeUnit.SECONDS);
            cache.put(1, "aaaa", 10, TimeUnit.SECONDS);
            //cache.put(1, "ccc", 60, TimeUnit.SECONDS);
            cache.put(2, "bbbb", 30, TimeUnit.SECONDS);
            cache.put(3, "cccc", 66, TimeUnit.SECONDS);
            cache.put(4, "dddd", 54, TimeUnit.SECONDS);
            cache.put(5, "eeee", 35, TimeUnit.SECONDS);
            cache.put(6, "ffff", 38, TimeUnit.SECONDS);
            cache.put(1, "aaaa", 70, TimeUnit.SECONDS);
            
            for(;;) {
                Thread.sleep(1000 * 2);
                {
                    for(Object obj : cache.getQ().toArray()) {
                        System.out.print(((DelayItem)obj).toString());
                        System.out.println(",");
                    }
                    System.out.println();
                }
            }
        }
    }

    结果片段1:(重复key的Delayed对象将从DelayedQueue中移除

    remove:=true
    remove:=true
    七月 04, 2017 11:28:36 上午 com.dxz.concurrent.delayqueue.Cache daemonCheck
    信息: cache service started.
    DelayItem [sequenceNumber=3, time=30000790187, item=Pair [key=2, value=bbbb]],
    DelayItem [sequenceNumber=6, time=35000842411, item=Pair [key=5, value=eeee]],
    DelayItem [sequenceNumber=7, time=38000847189, item=Pair [key=6, value=ffff]],
    DelayItem [sequenceNumber=5, time=54000835925, item=Pair [key=4, value=dddd]],
    DelayItem [sequenceNumber=4, time=66000803499, item=Pair [key=3, value=cccc]],
    DelayItem [sequenceNumber=9, time=70000900437, item=Pair [key=1, value=aaaa]],

    结果片段2:(队头对象将最先过时,可以被take()出来,这段代码在daemonCheck()方法中,即对超时对象的处理,如这里是清理session集合对象)

    ...
    DelayItem [sequenceNumber=3, time=30000665600, item=Pair [key=2, value=bbbb]],
    DelayItem [sequenceNumber=6, time=35000689152, item=Pair [key=5, value=eeee]],
    DelayItem [sequenceNumber=7, time=38000694272, item=Pair [key=6, value=ffff]],
    DelayItem [sequenceNumber=5, time=54000685398, item=Pair [key=4, value=dddd]],
    DelayItem [sequenceNumber=4, time=66000679595, item=Pair [key=3, value=cccc]],
    DelayItem [sequenceNumber=9, time=70000728406, item=Pair [key=1, value=aaaa]],
    
    DelayItem [sequenceNumber=6, time=35000689152, item=Pair [key=5, value=eeee]],
    DelayItem [sequenceNumber=5, time=54000685398, item=Pair [key=4, value=dddd]],
    DelayItem [sequenceNumber=7, time=38000694272, item=Pair [key=6, value=ffff]],
    DelayItem [sequenceNumber=9, time=70000728406, item=Pair [key=1, value=aaaa]],
    DelayItem [sequenceNumber=4, time=66000679595, item=Pair [key=3, value=cccc]],
    ...

     

  • 相关阅读:
    《活着》--余华
    《麦田里的守望者》--[美]杰罗姆·大卫·塞林格
    《平凡的世界》--路遥
    彩色照片转换为黑白照片(Color image converted to black and white picture)
    《戴尔·卡耐基传记》--[美]戴尔·卡耐基
    Maven的第一个小程序
    C# RabbitMQ优先级队列实战项目演练
    控制WinForm中Tab键的跳转
    C#模板引擎NVelocity实战项目演练
    C#隐藏手机号中间四位为*
  • 原文地址:https://www.cnblogs.com/duanxz/p/3078134.html
Copyright © 2011-2022 走看看