zoukankan      html  css  js  c++  java
  • kafka之三:kafka java 生产消费程序demo示例

    kafka是吞吐量巨大的一个消息系统,它是用scala写的,和普通的消息的生产消费还有所不同,写了个demo程序供大家参考。kafka的安装请参考官方文档。

    首先我们需要新建一个maven项目,然后在pom中引用kafka jar包,引用依赖如下:

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.10</artifactId>
            <version>0.8.0</version>
        </dependency>

    我们用的版本是0.8, 下面我们看下生产消息的代码:

    package cn.outofmemory.kafka;
    
    import java.util.Properties;
    
    import kafka.javaapi.producer.Producer;
    import kafka.producer.KeyedMessage;
    import kafka.producer.ProducerConfig;
    
    /**
     * Hello world!
     *
     */
    public class KafkaProducer 
    {
        private final Producer<String, String> producer;
        public final static String TOPIC = "TEST-TOPIC";
    
        private KafkaProducer(){
            Properties props = new Properties();
            //此处配置的是kafka的端口
            props.put("metadata.broker.list", "192.168.193.148:9092");
    
            //配置value的序列化类
            props.put("serializer.class", "kafka.serializer.StringEncoder");
            //配置key的序列化类
            props.put("key.serializer.class", "kafka.serializer.StringEncoder");
    
            //request.required.acks
            //0, which means that the producer never waits for an acknowledgement from the broker (the same behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees (some data will be lost when a server fails).
            //1, which means that the producer gets an acknowledgement after the leader replica has received the data. This option provides better durability as the client waits until the server acknowledges the request as successful (only messages that were written to the now-dead leader but not yet replicated will be lost).
            //-1, which means that the producer gets an acknowledgement after all in-sync replicas have received the data. This option provides the best durability, we guarantee that no messages will be lost as long as at least one in sync replica remains.
            props.put("request.required.acks","-1");
    
            producer = new Producer<String, String>(new ProducerConfig(props));
        }
    
        void produce() {
            int messageNo = 1000;
            final int COUNT = 10000;
    
            while (messageNo < COUNT) {
                String key = String.valueOf(messageNo);
                String data = "hello kafka message " + key;
                producer.send(new KeyedMessage<String, String>(TOPIC, key ,data));
                System.out.println(data);
                messageNo ++;
            }
        }
    
        public static void main( String[] args )
        {
            new KafkaProducer().produce();
        }
    }

    下面是消费端的代码实现:

    package cn.outofmemory.kafka;
    
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    import java.util.Properties;
    
    import kafka.consumer.ConsumerConfig;
    import kafka.consumer.ConsumerIterator;
    import kafka.consumer.KafkaStream;
    import kafka.javaapi.consumer.ConsumerConnector;
    import kafka.serializer.StringDecoder;
    import kafka.utils.VerifiableProperties;
    
    public class KafkaConsumer {
    
        private final ConsumerConnector consumer;
    
        private KafkaConsumer() {
            Properties props = new Properties();
            //zookeeper 配置
            props.put("zookeeper.connect", "192.168.193.148:2181");
    
            //group 代表一个消费组
            props.put("group.id", "jd-group");
    
            //zk连接超时
            props.put("zookeeper.session.timeout.ms", "4000");
            props.put("zookeeper.sync.time.ms", "200");
            props.put("auto.commit.interval.ms", "1000");
            props.put("auto.offset.reset", "smallest");
            //序列化类
            props.put("serializer.class", "kafka.serializer.StringEncoder");
    
            ConsumerConfig config = new ConsumerConfig(props);
    
            consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);
        }
    
        void consume() {
            Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
            topicCountMap.put(KafkaProducer.TOPIC, new Integer(1));
    
            StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());
            StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties());
    
            Map<String, List<KafkaStream<String, String>>> consumerMap = 
                    consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder);
            KafkaStream<String, String> stream = consumerMap.get(KafkaProducer.TOPIC).get(0);
            ConsumerIterator<String, String> it = stream.iterator();
            while (it.hasNext())
                System.out.println(it.next().message());
        }
    
        public static void main(String[] args) {
            new KafkaConsumer().consume();
        }
    }

    注意消费端需要配置成zk的地址,而生产端配置的是kafka的ip和端口。

  • 相关阅读:
    Vue基础知识总结(一)
    D3.js系列——布局:弦图和集群图/树状图
    D3.js系列——布局:饼状图和力导向图
    D3.js系列——交互式操作和布局
    SQLServer调试
    SQL Server性能常用语句
    sqlserver索引
    从 datetime2 数据类型到 datetime 数据类型的转换产生一个超出范围的值
    EntityFrame6在本地可以正常使用,部署到IIS后报异常(Additional information: The underlying provider failed on Open.)
    从对象创建和引用小议解耦
  • 原文地址:https://www.cnblogs.com/duanxz/p/4385700.html
Copyright © 2011-2022 走看看