zoukankan      html  css  js  c++  java
  • pytorch显示网络结构

    转发:https://blog.csdn.net/gyguo95/article/details/78821617

    首先要安装

    graphviz
      • 这种方法需要安装python-graphviz
        conda install -n pytorch python-graphviz
    visualize.py

    from graphviz import Digraph import torch from torch.autograd import Variable def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad (TODO: make optional) """ if params is not None: assert isinstance(params.values()[0], Variable) param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable name = param_map[id(u)] if params is not None else '' node_name = '%s %s' % (name, size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) add_nodes(var.grad_fn) return dot

      

    import ResNet34
    import numpy as np
    import torch
    from torch.autograd import Variable
    from visualize import make_dot
    from ResNet34 import NetG
    import torch as t
    
    class Config(object):
    
        nz = 500 # 噪声维度
        ngf = 64  # 生成器feature map数
        ndf = 64  # 判别器feature map数
        gen_search_num = 3  # 从512张生成的图片中保存最好的64张
        g_every = 5  # 每5个batch训练一次生成器
        gen_mean = 0  # 噪声的均值
        gen_std = 2  # 噪声的方差
        gen_num = 1
        batch_size = 256
        gpu = False  # 是否使用GPU
        gen_img = '2018.png'
    
    if __name__ == '__main__':
    
        opt = Config()
        a = NetG(opt)
        noises = t.randn(opt.gen_search_num, opt.nz, 1, 1).normal_(opt.gen_mean, opt.gen_std)
        noises = Variable(noises, volatile=True)
        y = a(noises)
        print(y.size())
        g = make_dot(y)
        g.view()
        #g.render('here', view=False)
    

      

  • 相关阅读:
    python---函数补充(变量传递),语句执行顺序(入栈顺序)
    python---基础知识回顾(十)进程和线程(多线程)
    python---方法解析顺序MRO(Method Resolution Order)<以及解决类中super方法>
    FindMe
    Android Studio系列教程五--Gradle命令详解与导入第三方包
    Material Design
    asmack
    AlarmDemo-with-Database
    ZhuGongpu CloudX-for-Android
    SaundProgressBar
  • 原文地址:https://www.cnblogs.com/dudu1992/p/9149737.html
Copyright © 2011-2022 走看看