zoukankan      html  css  js  c++  java
  • MapReduce实现共同朋友问题

    答案:

      

    package com.duking.mapreduce;
    
    import java.io.IOException;
    import java.util.Set;
    import java.util.StringTokenizer;
    import java.util.TreeSet;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class FindFriends {
        
        /**
         * map方法
         * @author duking
         *
         */
        public static class Map extends Mapper<Object, Text, Text, Text> {
            
            /**
             * 实现map方法
             */
            public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
                    
                    //将输入的每一行数据切分后存到persions中
                    StringTokenizer persions = new StringTokenizer(value.toString());
                    
                    //定义一个Text 存放本人信息owner
                    Text owner = new Text();
                    
                    //定义一个Set集合,存放朋友信息
                    Set<String> set = new TreeSet<String>();
                    
                    //将这一行的本人信息存入owner中
                    owner.set(persions.nextToken());
                    
                    //将所有的朋友信息存放到Set集合中
                    while(persions.hasMoreTokens()){
                        set.add(persions.nextToken());
                    }
                    
                    //定义一个String数组存放朋友信息
                    String[] friends = new String[set.size()];
                    //将集合转换为数组,并将集合中的数据存放到friend
                    friends = set.toArray(friends);
                    
                    //将朋友进行两两组合
                    for(int i=0;i<friends.length;i++){
                        for(int j=i+1;j<friends.length;j++){
                            String outputkey = friends[i]+friends[j];
                            context.write(new Text(outputkey), owner);
                        }
                    }
                    
            }
        
        }
        
        /**
         * Reduce方法
         * @author duking
         *
         */
        public static class Reduce extends Reducer<Text, Text, Text, Text> {
    
            /**
             * 实现Reduce方法
             */
            public void reduce(Text key, Iterable<Text> values,Context context) throws IOException, InterruptedException {
                
                String commonfriends = "";
                
                for (Text val : values){
                    if(commonfriends == ""){
                        commonfriends = val.toString();
                    }else{
                        commonfriends = commonfriends + ":" +val.toString();
                    }
                }
                
                context.write(key,new Text(commonfriends));
            }
        }
        
        
        /**
         * main
         * @param args
         * @throws Exception
         */
        public static void main(String[] args) throws Exception {
    
            Configuration conf = new Configuration();
    
            conf.set("mapred.job.tracker", "192.168.60.129:9000");
    
            //指定待运行参数的目录为输入输出目录
            String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    
            
            /*  指定工程目录下的input output为输入输出目录
              String[] ioArgs = new String[] {"input", "output" };
              String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
             */
    
            if (otherArgs.length != 2) { //判断运行参数个数
    
                System.err.println("Usage: Data Deduplication <in> <out>");
    
                System.exit(2);
    
            }
    
            // set maprduce job name
            Job job = new Job(conf, "findfriends");
            job.setJarByClass(FindFriends.class);
    
            // 设置map reduce处理类
            job.setMapperClass(Map.class);
            job.setReducerClass(Reduce.class);
    
            // 设置输出类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
    
            //设置输入输出路径
            FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    
            System.exit(job.waitForCompletion(true) ? 0 : 1);
    
        }
        
    
    }

    结果

  • 相关阅读:
    快速清除Word文档多余空行
    使用快照隔离
    hive 常用运算
    shell_Day02
    Study python_01
    Study python_02
    Windows server 2016 域服务1之创建域
    Study python_04
    shell_Day01
    Study python_03
  • 原文地址:https://www.cnblogs.com/duking1991/p/6126247.html
Copyright © 2011-2022 走看看