zoukankan      html  css  js  c++  java
  • 在linux下编写maven程序

    1.在linux下安装eclipse-jee-kepler-SR2-linux-gtk.tar.gz
         并在桌面生成快捷方式
    2.解压m2.tar.gz /root/
     
    3.在maven程序/pom.xml添加引用,引用Hadoop,引用JDK
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>2.2.0</version>
            </dependency>
     
     
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-mapreduce-client-core</artifactId>
                <version>2.2.0</version>
            </dependency>
     
            <dependency>
                <groupId>jdk.tools</groupId>
                <artifactId>jdk.tools</artifactId>
                <version>1.7</version>
                <scope>system</scope>
                <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
            </dependency>
    4.编写DataCount,在这里,我们需要编写Map/Reduce两个阶段,一个负责读取数据并将有用的数据写入字节流中
         Map阶段:1.接收数据。2.传递数据
           public static class DCMapper extends Mapper<LongWritable, Text, Text, DataBean>
           {
                  @Override
                  protected void map(LongWritable key, Text value, Context context)
                               throws IOException, InterruptedException {
                         //1.jie shou shu ju
                         String line = value.toString();
                         String[] fields = line.split(" ");
                         String telNo = fields[1];
                         long up = Long.parseLong(fields[8]);
                         long down = Long.parseLong(fields[9]);
                         //2.chuan di shu ju
                         DataBean bean = new DataBean(telNo, up, down);
                         context.write(new Text(telNo), bean);
                  }
           }
         Reduce阶段
     
           public static class DCReducer extends Reducer<Text, DataBean, Text, DataBean>
           {
                  @Override
                  protected void reduce(Text key, Iterable<DataBean> v2s,
                               Context context)
                               throws IOException, InterruptedException {
                         long up_sum = 0;
                         long down_sum = 0;
                         for (DataBean bean : v2s)
                         {
                               up_sum += bean.getUpPayLoad();
                               down_sum += bean.getDownPayLoad();
                         }
                         DataBean bean = new DataBean("", up_sum, down_sum);
                         context.write(key, bean);
                  }
           }
    5.Main方法,提供数据
           public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
                  Configuration conf = new Configuration();
                  Job job = Job.getInstance(conf);
                  
                  job.setJarByClass(DataCount.class);
                  job.setMapperClass(DCMapper.class);
                  // k2 v2 and k3 v3
                  // job.setMapOutputKeyClass(Text.class);
                  // job.setMapOutputValueClass(DataBean.class);
                  FileInputFormat.setInputPaths(job, new Path(args[0]));
                  
                  job.setReducerClass(DCReducer.class);
                  job.setOutputKeyClass(Text.class);
                  job.setOutputValueClass(DataBean.class);
                  FileOutputFormat.setOutputPath(job, new Path(args[1]));
                  job.waitForCompletion(true);
           }
     
    6.将程序打包成jar包,并上传到hdfs中,hadoop fs -put HTTP_20130313143750.dat /data.doc
    7.运行hadoop程序,hadoop jar /root/examples.jar cn.itcast.hadoop.mr.dc.DataCount /data.doc /dataout
     
     
    说明,如果期间报错,注意检查yarn进程是否启动。如没有启动yarn,需要启动yarn 
     
     
     
     
  • 相关阅读:
    flowable camunda activiti 功能对比
    activiti与flowable的区别
    工作流框架flowable6与activiti7的选择
    NFS服务的简介及常见故障解决方法
    yum命令详解
    怎么把Chrome网页背景变成黑色模式
    时序数据库InfluxDB 2.0 alpha 发布:主推新的Flux查询语言,TICK栈将成为整体
    influxDB 2.0安装及使用说明
    InfluxDB和MySQL的读写对比测试
    时序数据库特点与对比
  • 原文地址:https://www.cnblogs.com/dulixiaoqiao/p/6985174.html
Copyright © 2011-2022 走看看