zoukankan      html  css  js  c++  java
  • 常见的排序方法

    常见经典排序算法
    1.希尔排序
    2.二分插入法
    3.直接插入法
    4.带哨兵的直接排序法
    5.冒泡排序
    6.选择排序
    7.快速排序
    8.堆排序
    一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的)
    /* Shell 排序法 */
    #include <stdio.h>
    void sort(int v[],int n)
    {
         int gap,i,j,temp;
         for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */
         {
              for(i=gap;i<n;i++)  /* 定位到每一个元素 */
              {
                   for(j=i-gap;(j >= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */
                   {
                    temp=v[j];
                    v[j]=v[j+gap];
                    v[j+gap]=temp;
                   }
              }
         }
    }
     
    二.二分插入法
    /* 二分插入法 */
    void HalfInsertSort(int a[], int len)
    {
         int i, j,temp;
         int low, high, mid;
         for (i=1; i<len; i++)
         {
              temp = a[i];/* 保存但前元素 */
              low = 0;
              high = i-1;
              while (low <= high) /* 在a[low...high]中折半查找有序插入的位置 */
              {
                   mid = (low + high) / 2; /* 找到中间元素 */
                   if (a[mid] > temp)  /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */
                   {
                    high = mid-1;
                   }
                   else    /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧 */
                   {
                    low = mid+1;
                   }
              }       /* 找到当前元素的位置,在low和high之间 */
              for (j=i-1; j>high; j--)/* 元素后移 */
              {
               a[j+1] = a[j];
              }
              a[high+1] = temp; /* 插入 */
         }
    }
     
    三.直接插入法
    /*直接插入法*/
    void InsertionSort(int input[],int len) 
    {
         int i,j,temp;
         for (i = 1; i < len; i++) 
         {
              temp = input[i];  /* 操作当前元素,先保存在其它变量中 */
              for (j = i - 1;j>-1&&input[j] > temp ; j--) /* 从当前元素的上一个元素开始查找合适的位置 */
              {
                   input[j + 1] = input[j]; /* 一边找一边移动元素 */
                   input[j] = temp;
              }
         }
    }
     
    四.带哨兵的直接排序法
     /**
         * 带哨兵的直接插入排序,数组的第一个元素不用于存储有效数据
         * 将input[0]作为哨兵,可以避免判定input[j]中,数组是否越界
         * 因为在j--的过程中,当j减小到0时,变成了input[0]与input[0]
         * 自身进行比较,很明显这个时候说明位置i之前的数字都比input[i]小
         * 位置i上的数字不需要移动,直接进入下一轮的插入比较。
         *
         */
    void InsertionSortWithPiquet(int input[],int len) 
    {
         int i,j;
         for (i = 2; i < len; i++)  /* 保证数组input第一元素的存储数据无效,从第二个数据开始与它前面的元素比较 */
         {
              input[0] = input[i];
              for (j = i - 1; input[j] > input[0] ; j--) 
              {
                   input[j + 1] = input[j];
                   input[j] = input[0]; /* input[j]一直都是排序的元素中最大的那一个 */
              }
         }
    }
     
    五.冒泡法
    /* 冒泡排序法 */
    void Bublesort(int a[],int n)
    {
         int i,j,k;
         for(j=0;j<n;j++)   /* 气泡法要排序n次*/
         {
              for(i=0;i<n-j;i++)  /* 值比较大的元素沉下去后,只把剩下的元素中的最大值再沉下去就可以啦 */
              {
                   if(a[i]>a[i+1])  /* 把值比较大的元素沉到底 */
                   {
                        k=a[i];
                        a[i]=a[i+1];
                        a[i+1]=k;
                   }
              }
         }
    }
     
    六.选择排序法
     
    /*算法原理:首先以一个元素为基准,从一个方向开始扫描,
     * 比如从左至右扫描,以A[0]为基准。接下来从A[0]...A[9]
     * 中找出最小的元素,将其与A[0]交换。然后将基准位置右
     * 移一位,重复上面的动作,比如,以A[1]为基准,找出
     * A[1]~A[9]中最小的,将其与A[1]交换。一直进行到基准位
     * 置移到数组最后一个元素时排序结束(此时基准左边所有元素
     * 均递增有序,而基准为最后一个元素,故完成排序)。
     */
    void Selectsort(int A[],int n) 
    {
         int i,j,min,temp; 
         for(i=0;i<n;i++) 
         {
              min=i; 
              for(j=i+1;j<=n;j++)  /* 从j往前的数据都是排好的,所以从j开始往下找剩下的元素中最小的 */
              {
                   if(A[min]>A[j])  /* 把剩下元素中最小的那个放到A[i]中 */
                   {
                    temp=A[i]; 
                    A[i]=A[j]; 
                    A[j]=temp;
                   }
              }
        } 
    }
     
    七.快速排序
    /* 快速排序(quick sort)。在这种方法中,
     * n 个元素被分成三段(组):左段left,
     * 右段right和中段middle。中段
     * 仅包含一个元素。左段中各元素都小于等
     * 于中段元素,右段中各元素都大于等于中
     * 段元素。因此left和right中的元
     * 素可以独立排序,并且不必对left和
     * right的排序结果进行合并。
     * 使用快速排序方法对a[0:n-1]排序
     * 从a[0:n-1]中选择一个元素作为middle,
     * 该元素为支点把余下的元素分割为两段left
     * 和right,使得left中的元素都小于
     * 等于支点,而right 中的元素都大于等于支点
     * 递归地使用快速排序方法对left 进行排序
     * 递归地使用快速排序方法对right 进行排序
     * 所得结果为left+middle+right
     */
    void Quick_sort(int data[],int low,int high) 
    {
     int mid; 
     if(low<high) 
     {
      mid=Partition(data,low,high); 
      Quick_sort(data,low,mid-1); /* 递归调用 */
      Quick_sort(data,mid+1,high);
     } 
    }
    /* 要注意看清楚下面的数据之间是如何替换的,
     * 首先选一个中间值,就是第一个元素data[low],
     * 然后从该元素的最右侧开始找到比它小的元素,把
     * 该元素复制到它中间值原来的位置(data[low]=data[high]),
     * 然后从该元素的最左侧开始找到比它大的元素,把
     * 该元素复制到上边刚刚找到的那个元素的位置(data[high]=data[low]),
     * 最后将这个刚空出来的位置装入中间值(data[low]=data[0]),
     * 这样一来比mid大的都会跑到mid的右侧,小于mid的会在左侧,
     * 最后一行,返回的low是中间元素的位置,左右分别递归就可以排好序了。
     */
    int Partition(int data[],int low,int high) 
    {
     int mid; 
        data[0]=data[low];
     mid=data[low]; 
     while(low < high) 
     {
      while((low < high) && (data[high] >= mid))
      {
       --high;
      }
      data[low]=data[high]; /* 从high的位置开始往low的方向找,找到比data[low]小的元素,存到data[low]中 */
      
      while((low < high) && (data[low] < mid)) /* 新得到的data[low]肯定小于原来的data[low]即mid */
      {
       ++low;
      }
      data[high]=data[low];  /* 从low的位置开始往high的方向找,找到比data[high]大的元素,存在data[high]中 */
     }
     data[low]=data[0];    /* 把low的新位置存上原来的data[low]的数据 */
     return low;     /* 递归时,把它做为右侧元素的low */
     
    八.堆排序
    /**************************************************************
     * 堆的定义 n 个元素的序列 {k1,k2,...,kn}当且仅当满足下列关系时,
     * 称为堆:
     * ki<=k2i     ki<=k2i+1     (i=1,2,...,n/2)
     * 或
     * ki>=k2i     ki>=k2i+1     (i=1,2,...,n/2)
     * 堆排序思路:
     * 建立在树形选择排序基础上;
     * 将待排序列建成堆(初始堆生成)后,序列的第一个元素(堆顶元素)就一定是序列中的最大元素;
     * 将其与序列的最后一个元素交换,将序列长度减一;
     * 再将序列建成堆(堆调整)后,堆顶元素仍是序列中的最大元素,再次将其与序列最后一个元素交换并缩短序列长度;
     * 反复此过程,直至序列长度为一,所得序列即为排序后结果。
     **************************************************************/
    void HeapAdjust(int data[],int s,int m) /* 排列成堆的形式 */
         int j,rc; 
         rc=data[s];     /* 保存处理元素 */
         for(j=2*s;j<=m;j*=2)        /* 处理父亲元素 */
         {
              if(j<m && data[j]<data[j+1])  ++j; /* 取较大的孩子节点 */
              if(rc>data[j]) break; 
              data[s]=data[j];   /* 父节点比较大的孩子节点大则互换 ,保证父节点比所有子节点都大(父节点存储在前面)*/
              s=j; 
         } 
        data[s]=rc;     /* 相当于data[j]=rc */
    }
    void Heap_sort(int data[],int long_n) /* 堆排序函数 */
    {
         int i,temp; 
         for(i=long_n/2;i>0;--i)  /* 还没有读懂这样处理的原因,希望大家不吝赐教 */
         {
          HeapAdjust(data,i,long_n); /* 处理后,data[i]是这个数组后半部分的最大值 */
         }
         for(i=long_n;i>0;--i)
         {
          temp=data[1];    /* 把根元素(剩下元素中最大的那个)放到结尾 ,下一次只要排剩下的数就可以啦*/
          data[1]=data[i]; 
          data[i]=temp;   
          HeapAdjust(data,1,i-1);
         }
    }
  • 相关阅读:
    水平居中
    flex布局
    get新技能:上传了 flv 或 MP4 文件到服务器,可访问总是出现 “无法找到该页”的 404 错误
    小程序3.8
    小程序3.7
    Vue 中select option默认选中的处理方法
    HTML5 data属性
    静态html返回
    node中可读流、可写流
    node.js fs、http使用
  • 原文地址:https://www.cnblogs.com/dullbaby/p/5434318.html
Copyright © 2011-2022 走看看