zoukankan      html  css  js  c++  java
  • PP: Data-driven classification of residential energy consumption patterns by means of functional connectivity networks

    Purpose

    Implement a good user aggregation and classification. 

    or to assess the interrelation patterns between user profiles. 

    Data

    i. daily temperature and load profiles sampled at hourly for one year.  

    ii. 2201 customers

    iii.

    Methodology

    1. correlation matrix R of all pairs of users; 

    2. transform the correlation matrix R into a distance matrix D;

    ?? why?因为相似度和距离是反的, 相似度越大,距离越近, 显然以距离作为边权重更合适.

    3. network construction;

    each user is a node; the weighted connections are established between all of them; weight eij = Dij.  

    4. extract the MST network

    Kruskal's algorithm

    5. community detection

    Newman. 

     Results

    1. raw data: 各种distribution; average curve. 

    2. distance matrix: 热度图; 

    3. peak time?? 

    4. 缺少与其他方法的比较,也没有说明具体分为了多少类,每个类的实际time series pattern是啥.反正乱七八糟的,生气.

  • 相关阅读:
    mysql总结
    ContOS7 安装 java1.8
    查找
    排序
    线程通信(交替执行)
    死锁(实现)
    Rank Scores
    OpenMP
    聚类的数据量过大的问题
    编译GraphLab出错
  • 原文地址:https://www.cnblogs.com/dulun/p/12189078.html
Copyright © 2011-2022 走看看