zoukankan      html  css  js  c++  java
  • PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series

    From: KU Leuven; ESAT-STADIUS比利时鲁汶大学

    ?? How to model real-world multidimensional time series? especially, when these are sporadically observed data. 

    ?? how to describe the evolution of the probability distribution of the data?  ODE dynamics.

    sporadically-observed time series: sampling is irregular both in time and across dimensions. 

    Evaluation on both synthetic data and real-world data.

    Combine GRU-ODE and GRU-Bayes into GRU-ODE-Bayes model. 

    Introduction: 

    most methodology assumption: signals are measured systematically at fixed time intervals. 

    However, most real-world data is sporadic. 

    fixed time intervals data VS sporadic data.  

    How to model sporadic data becomes a challenge. 

    neural ordinary differential equation model; It opens the perspective of tackling the issue of irregular sampling. 

    interleave the ODE and the input processing steps; + GRU + Bayesian update network. 

    Performance metric: MSE, mean square error; NegLL, non-negative log-likelihood. 

    ?? 可是他解决了一个什么问题还不知道,只知道 是model sporadical time series. 

  • 相关阅读:
    周总结07(2018.1.8-2018.1.13)
    软件工程概论课总结
    第二阶段团队冲刺-seven
    人月神话阅读笔记06
    第二阶段团队冲刺-six
    周总结06(2018.1.1-2018.1.6)
    第二阶段团队冲刺-five
    开发记录06
    开发记录05
    开发记录04
  • 原文地址:https://www.cnblogs.com/dulun/p/12297378.html
Copyright © 2011-2022 走看看