zoukankan      html  css  js  c++  java
  • PP: Neural ordinary differential equations

    Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. 

    Before: a discrete sequence of hidden layers.

    After: the derivative of the hidden state.

    Traditional methods: residual networks, RNN decoders, and normalizing flows build complicated transformations by composing a sequence of transformations to a hidden state.

    we parameterize the continuous dynamics of hidden units using an ordinary differential equation (ODE) 常微分函数.

    将h(t) 看作一个函数,可以用一个neural network学习h(t)的分布,然后输入层h(0) ----> 输出层h(T); 

  • 相关阅读:
    写代码随想
    学生管理系统
    自定义栈
    位运算符加密
    自定义Vector
    二叉树排序
    双向循环链表
    双向链表
    加载properties文件
    通讯录
  • 原文地址:https://www.cnblogs.com/dulun/p/12297633.html
Copyright © 2011-2022 走看看