题意:有一个 n 位密码锁,每位都是0-9,可以循环旋转。同时可以让1-3个相邻数字进行旋转一个,给定初始状态和目状态,问你最少要转多少次。
析:很明显的一个DP题。dp[i][j][k] 表示前 i 位已经转好,并且第 i+1 位是 j ,第 i+2 位是 k,那么我们先把第 i 位转到指定位置,然后计算转多少次,
然后再考虑 i+1位和 i+2位,要旋转小于等于第 i 位的次数,这就转移完了。比较简单的一个DP,只是没有遇见过。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } char s1[maxn], s2[maxn]; int a[maxn], b[maxn]; int g[2][15][15]; LL dp[maxn][15][15]; int solve(int pre, int last, int cnt){ return cnt ? (last+10-pre) % 10 : (pre+10-last) % 10; } int main(){ for(int i = 0; i < 2; ++i) for(int j = 0; j < 10; ++j) for(int k = 0; k < 10; ++k) g[i][j][k] = i ? (j+k) % 10 : (j-k+10) % 10; while(scanf("%s %s", s1, s2) == 2){ n = strlen(s1); for(int i = 1; i <= n; ++i) a[i] = s1[i-1] - '0', b[i] = s2[i-1] - '0'; a[n+1] = a[n+2] = b[n+1] = b[n+2] = 0; for(int i = 0; i <= n; ++i) for(int j = 0; j < 10; ++j) for(int k = 0; k < 10; ++k) dp[i][j][k] = LNF; dp[0][a[1]][a[2]] = 0; for(int i = 1; i <= n; ++i){ for(int r = 0; r < 2; ++r){ for(int j = 0; j < 10; ++j){ for(int k = 0; k < 10; ++k){ int x = solve(j, b[i], r); for(int ii = 0; ii <= x; ++ii){ for(int jj = 0; jj <= ii; ++jj){ dp[i][g[r][k][ii]][g[r][a[i+2]][jj]] = Min(dp[i][g[r][k][ii]][g[r][a[i+2]][jj]], dp[i-1][j][k] + x); } } } } } } printf("%lld ", dp[n][0][0]); } return 0; }