zoukankan      html  css  js  c++  java
  • HDU 5901 Count primes (模板题)

    题意:给求 1 - n 区间内的素数个数,n <= 1e11。

    析:模板题。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 5;
    const int mod = 1e9 + 7;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    bool np[N];
    int prime[N], pi[N];
    
    int getprime(){
        int cnt = 0;
        np[0] = np[1] = true;
        pi[0] = pi[1] = 0;
        for(int i = 2; i < N; ++i){
            if(!np[i]) prime[++cnt] = i;
            pi[i] = cnt;
            for(int j = 1; j <= cnt && i * prime[j] < N; ++j){
                np[i * prime[j]] = true;
                if(i % prime[j] == 0)   break;
            }
        }
        return cnt;
    }
    
    const int M = 7;
    const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
    int phi[PM + 1][M + 1], sz[M + 1];
    void init(){
        getprime();
        sz[0] = 1;
        for(int i = 0; i <= PM; ++i)  phi[i][0] = i;
        for(int i = 1; i <= M; ++i){
            sz[i] = prime[i] * sz[i - 1];
            for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
        }
    }
    
    int sqrt2(LL x){
        LL r = (LL)sqrt(x - 0.1);
        while(r * r <= x)   ++r;
        return int(r - 1);
    }
    
    int sqrt3(LL x){
        LL r = (LL)cbrt(x - 0.1);
        while(r * r * r <= x)   ++r;
        return int(r - 1);
    }
    
    LL getphi(LL x, int s){
        if(s == 0)  return x;
        if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
        if(x <= prime[s]*prime[s])   return pi[x] - s + 1;
        if(x <= prime[s]*prime[s]*prime[s] && x < N){
            int s2x = pi[sqrt2(x)];
            LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
            for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];
            return ans;
        }
        return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
    }
    
    LL getpi(LL x){
        if(x < N)   return pi[x];
        LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
        for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;
        return ans;
    }
    
    LL lehmer_pi(LL x){
        if(x < N)   return pi[x];
        int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
        int b = (int)lehmer_pi(sqrt2(x));
        int c = (int)lehmer_pi(sqrt3(x));
        LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;
        for (int i = a + 1; i <= b; i++){
            LL w = x / prime[i];
            sum -= lehmer_pi(w);
            if (i > c) continue;
            LL lim = lehmer_pi(sqrt2(w));
            for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);
        }
        return sum;
    }
    
    int main(){
        init();
        LL n;
        while(scanf("%I64d", &n) == 1){
            printf("%I64d
    ", lehmer_pi(n));
        }
        return 0;
    }
    
  • 相关阅读:
    【转】Chrome 控制台不完全指南
    AngularJS 之 Factory vs Service vs Provider【转】
    【转】NuGet.org 无法访问的解决方法
    jquery easyui 1.4.1 验证时tooltip 的位置调整
    jquery easyui 1.4.1 API( CHM版)
    扩展 easyui-tabs 插件 关闭标签页方法
    easyui layout 折叠后显示标题
    easyui 中Datagrid 控件在列较多且无数据时,列显示不全的解决方案
    为easyui datagrid 添加上下方向键移动
    Android布局实现圆角边框
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/5884723.html
Copyright © 2011-2022 走看看