题意:给出n对数keyi,vali表示当前这对数的键值和权值,可以操作将连续的两个数合并,如果满足gcd(a[i],a[i+1])>1,得到的价值是两个数的权值和,
每次合并两个数之后,这两个数就会消失,然后旁边的数会接上.
析:区间DP,首先dp[i][j] 表示区间第 i 段到第 j 段所能得到的最大值,然后分情况讨论一下,第一种是区间内的所有的都可以合并,这个预处理一下就好,
第二种不能全合并,那么选取最大的那一个就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 3e2 + 5; const int mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL sum[maxn]; LL dp[maxn][maxn], a[maxn], val[maxn]; bool f[maxn][maxn]; int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); for(int i = 1; i <= n; ++i) scanf("%I64d", &a[i]); for(int i = 1; i <= n; ++i){ scanf("%I64d", &val[i]); sum[i] = sum[i-1] + val[i]; } memset(f, false, sizeof f); for(int i = 1; i < n; ++i) f[i][i+1] = __gcd(a[i], a[i+1]) != 1; for(int i = 2; i <= n; i += 2){ for(int j = 1; j+i-1 <= n; ++j){ int k = j+i-1; if(__gcd(a[k-1], a[k]) != 1 && f[j][k-2]) f[j][k] = true; else if(__gcd(a[j+1], a[j]) != 1 && f[j+2][k]) f[j][k] = true; else if(__gcd(a[j], a[k]) != 1 && f[j+1][k-1]) f[j][k] = true; } } memset(dp, 0, sizeof dp); for(int i = 2; i <= n; ++i){ for(int j = 1; j+i-1 <= n; ++j){ int l = j+i-1; if(f[j][l]) dp[j][l] = sum[l] - sum[j-1]; else{ for(int k = j; k < l; ++k) dp[j][l] = Max(dp[j][l], dp[j][k] + dp[k+1][l]); } } } printf("%I64d ", dp[1][n]); } return 0; }