zoukankan      html  css  js  c++  java
  • UVa 1336 Fixing the Great Wall (区间DP)

    题意:给定 n 个结点,表示要修复的点,然后机器人每秒以 v 的速度移动,初始位置在 x,然后修复结点时不花费时间,但是如果有的结点暂时没修复,

    那么每秒它的费用都会增加 d,修复要花费 c,坐标是 pos,问你最少花费是多少。

    析:dp[i][j][k] 表示已经修复了 i-j 区间,并且当前在 k,那么两种方案,向左移动,或者向右移动,最后输出就好了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #define print(a) printf("%d
    ", (a))
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e3 + 5;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    struct Node{
        int pos, cost, det;
        bool operator < (const Node &p) const{
            return pos < p.pos;
        }
    };
    Node a[maxn];
    double sum[maxn], v;
    double dp[maxn][maxn][2];
    
    double cal(int i, int j, int l, int r){
         double t = 1.0 * fabs(a[l].pos-a[r].pos) / v;
         double ans = sum[i-1] + sum[n+1] - sum[j];
         return ans * t;
    }
    
    int solve(){
        for(int i = 0; i <= n+1; ++i)
            for(int j = 0; j <= n+1; ++j)
                dp[i][j][0] = dp[i][j][1] = inf;
    
        int p = lower_bound(a+1, a+n+1, (Node){m, 0, 0}) - a;
        dp[p][p][0] = dp[p][p][1] = 0.0;
    
        for(int i = p; i > 0; --i){
            for(int j = p; j <= n+1; ++j){
                dp[i-1][j][0] = min(dp[i-1][j][0], dp[i][j][0]+cal(i, j, i, i-1)+a[i-1].cost);
                dp[i-1][j][0] = min(dp[i-1][j][0], dp[i][j][1]+cal(i, j, j, i-1)+a[i-1].cost);
                dp[i][j+1][1] = min(dp[i][j+1][1], dp[i][j][0]+cal(i, j, i, j+1)+a[j+1].cost);
                dp[i][j+1][1] = min(dp[i][j+1][1], dp[i][j][1]+cal(i, j, j, j+1)+a[j+1].cost);
            }
        }
        return min(dp[1][n+1][0], dp[1][n+1][1]);
    }
    
    int main(){
        while(scanf("%d %lf %d", &n, &v, &m) == 3 && n+v+m){
            for(int i = 1; i <= n; ++i)  scanf("%d %d %d", &a[i].pos, &a[i].cost, &a[i].det);
            a[n+1].pos = m;  a[n+1].cost = a[n+1].det = 0;
            sort(a+1, a+n+2);
            sum[0] = 0;
            for(int i = 1; i <= n+1; ++i) sum[i] = sum[i-1] + a[i].det;
    
            int ans = solve();
            printf("%d
    ", ans);
        }
        return 0;
    }
    
  • 相关阅读:
    Django2.1发布,Django2.1新特性
    解决tomcat启动慢问题
    ELKstack简介及环境部署
    Django项目中使用celery做异步任务
    vue moment库格式化处理后端传的日期
    vueAdmin ui基础包
    DRF项目工程基础包
    linux文件系统命令和分区 挂载
    linux解压缩基本命令使用
    vim基本操作
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/5910177.html
Copyright © 2011-2022 走看看