题意:由数字1到n组成的所有排列中,问满足题目所给的n-1个字符的排列有多少个,如果第i字符是‘I’表示排列中的第i-1个数是小于第i个数的。
如果是‘D’,则反之。
析:dp[i][j] 表示前 i 个数以 j 结尾有多少个,然后如果是 I ,那么就好,就是 i-1 中的前j-1项和,如果是 D,那就更好玩了,我们看这样一个性质,奇妙!
假设你有一个排列是 1 3 4 ,然后下一个数是 2,那么怎么放呢,我们把 排列中每一个大于等于 2的都加1,并不会影响这个排列,然后再把这个2放上,
因为我们可以得到 dp[i][j] = dp[i-1][i-1] + dp[i-1][i-2] + ... + dp[i-1][j],这个我们可以用前缀和来优化 sum[i][j] 表示前 i 个结尾小于等于 j有总和。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn], sum[maxn][maxn]; char s[maxn]; int main(){ while(scanf("%s", s) == 1){ n = strlen(s); sum[1][0] = sum[0][0] = 0; sum[1][1] = dp[1][1] = 1; for(int i = 2; i <= n+1; ++i){ for(int j = 1; j <= i; ++j){ if(s[i-2] == 'I') dp[i][j] = sum[i-1][j-1]; else if(s[i-2] == 'D') dp[i][j] = (sum[i-1][i-1] - sum[i-1][j-1] + mod) % mod; else dp[i][j] = sum[i-1][i-1]; sum[i][j] = (sum[i][j-1] + dp[i][j]) % mod; } } printf("%d ", sum[n+1][n+1]); } return 0; }