题意:你从开始坐标到末尾坐标,要经过 k 秒,然后给你每秒的风向,和飞机的最大速度,问能不能从开始到末尾。
析:首先这个风向是不确定的,所以我们先排除风向的影响,然后算出,静风是的最小速度,如果这都大于最大速度,肯定是不可能,如果可能,
再计算出每秒走的单位长度,然后再模拟整个过程。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e4 + 5; const LL mod = 1e3 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int t[maxn]; double x[maxn], y[maxn]; int main(){ freopen("joy.in", "r", stdin); freopen("joy.out", "w", stdout); int sx, sy, fx, fy; while(scanf("%d %d %d %d", &sx, &sy, &fx, &fy) == 4){ int k; scanf("%d %d %d", &n, &k, &m); for(int i = 1; i <= n; ++i) scanf("%d %lf %lf", &t[i], &x[i], &y[i]); t[n+1] = k; double dx = fx - sx; double dy = fy - sy; for(int i = 1; i <= n; ++i){ dx -= x[i] * (t[i+1] - t[i]); dy -= y[i] * (t[i+1] - t[i]); } if(hypot(dx, dy) > (double)m * k){ puts("No"); continue; } puts("Yes"); double vx = dx / k; double vy = dy / k; int pos = 0; double ansx = sx; double ansy = sy; for(int i = 1; i <= k; ++i){ if(t[pos+1] < i) ++pos; ansx += x[pos] + vx; ansy += y[pos] + vy; printf("%f %f ", ansx, ansy); } } return 0; }