zoukankan      html  css  js  c++  java
  • UVa 1363 Joseph's Problem (数论)

    题意:给定 n,k,求 while(i <=n) k % i的和。

    析:很明显是一个数论题,写几个样例你会发现规律,假设 p = k / i.那么k  mod i = k - p*i,如果 k / (i+1) 也是p,那么就能得到 :

    k mod (i+1) = k - p*(i+1) = k mod i - p。所以我们就能得到一个等差数列 k mod (i+1) - k mod i = -p,首项是 p % i。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <ctime>
    #include <cstdlib>
    #define debug puts("+++++")
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e6 + 5;
    const LL mod = 1e9 + 7;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    inline int gcd(int a, int b){  return b == 0 ? a : gcd(b, a%b); }
    inline int lcm(int a, int b){  return a * b / gcd(a, b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    LL solve(int a, int d, int n){
        return (LL)((LL)n*a - (LL)n*(n-1)/2*d);
    }
    
    int main(){
        while(scanf("%d %d", &n, &m) == 2){
            int i = 1;
            LL ans = 0;
            while(i <= n){
                int a = m % i;
                int d = m / i;
                int cnt = n - i + 1;
                if(d > 0)  cnt = Min(cnt, a/d+1);
                ans += solve(a, d, cnt);
                i += cnt;
            }
            cout << ans << endl;
        }
        return 0;
    }
    

    题意:给定n, k,求出ni=1(k mod i)

  • 相关阅读:
    mysql查询太慢,我们如何进行性能优化?
    详解MySQL事务原理
    精通MySQL之锁篇
    精通MySQL之索引篇,这篇注重练习!
    mysql数据结构及mvcc
    mysql-主从同步
    redis分布式锁
    售后系统构建和商品状态重构经验与总结
    【更新2021-4-25】如何处理PoshSSH 连接主机时的"New-SSHSession : Key exchange negotiation failed."故障
    计算几何---大牛们
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6046897.html
Copyright © 2011-2022 走看看