题意:有f+1个人来分n个圆形派,每个人得到的必须是一个整块,并且是面积一样,问你面积是多少。
析:二分这个面积即可,小了就多余了,多了就不够分,很简单就能判断。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#define debug() puts("++++");
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const int mod = 2000;
const int dr[] = {-1, 1, 0, 0};
const int dc[] = {0, 0, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int a[maxn];
bool judge(double mid){
int ans = 0;
for(int i = 0; i < n; ++i)
ans += (int)floor(PI * a[i] * a[i] / mid);
return ans >= m;
}
double solve(){
double l = 0, r = PI * 10000.0* 10000.0;
while(fabs(r - l) > 1e-5){
double mid = (l + r) / 2.0;
if(judge(mid)) l = mid;
else r = mid;
}
return l;
}
int main(){
int T; cin >> T;
while(T--){
scanf("%d %d", &n, &m);
++m;
for(int i = 0; i < n; ++i) scanf("%d", a+i);
printf("%.4f
", solve());
}
return 0;
}