题意:
多年以后,笨笨长大了,成为了电话线布置师。由于地震使得某市的电话线全部损坏,笨笨是负责接到震中市的负责人。
该市周围分布着N(1<=N<=1000)根据1……n顺序编号的废弃的电话线杆,任意两根线杆之间没有电话线连接,一共有p(1<=p<=10000)对电话杆可以拉电话线。
其他的由于地震使得无法连接。
第i对电线杆的两个端点分别是ai,bi,它们的距离为li(1<=li<=1000000)。数据中每对(ai,bi)只出现一次。编号为1的电话杆已经接入了全国的电话网络,
整个市的电话线全都连到了编号N的电话线杆上。也就是说,笨笨的任务仅仅是找一条将1号和N号电线杆连起来的路径,其余的电话杆并不一定要连入电话网络。
电信公司决定支援灾区免费为此市连接k对由笨笨指定的电话线杆,对于此外的那些电话线,需要为它们付费,总费用决定于其中最长的电话线的长度
(每根电话线仅连接一对电话线杆)。如果需要连接的电话线杆不超过k对,那么支出为0.
请你计算一下,将电话线引导震中市最少需要在电话线上花多少钱?
析:二分最长的电话线长度,然后每次跑一次最短路dijkstra,每次都是把权值大于二分的长度边设为1,其他的设置为0,每次判断最短路是不是小于k即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-5; const int maxn = 1e3 + 10; const int mod = 1e6; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } vector<int> G[maxn], w[maxn]; int d[maxn]; int k; int dijkstra(int m){ priority_queue<P, vector<P>, greater<P> > pq; fill(d, d + n + 1, INF); d[1] = 0; pq.push(P(0, 1)); while(!pq.empty()){ P pp = pq.top(); pq.pop(); int u = pp.second; if(u == n) return pp.first <= k; if(d[u] < pp.first) continue; for(int i = 0; i < G[u].size(); ++i){ int v = G[u][i]; if(d[v] > d[u] + (w[u][i] > m)){ d[v] = d[u] + (w[u][i] > m); pq.push(P(d[v], v)); } } } return -1; } int solve(){ int l = 0, r = 1000000; while(l < r){ int m = l+r >> 1; int t = dijkstra(m); if(t < 0) return -1; if(t) r = m; else l = m+1; } return dijkstra(l) ? l : l-1; } int main(){ while(scanf("%d %d %d", &n, &m, &k) == 3){ for(int i = 1; i <= n; ++i) G[i].clear(), w[i].clear(); int u, v, val; for(int i = 0; i < m; ++i){ scanf("%d %d %d", &u, &v, &val); G[u].push_back(v); G[v].push_back(u); w[u].push_back(val); w[v].push_back(val); } printf("%d ", solve()); } return 0; }