zoukankan      html  css  js  c++  java
  • SPOJ CIRU The area of the union of circles (计算几何)

    题意:求 m 个圆的并的面积。

    析:就是一个板子题,还有要注意圆的半径为0的情况。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<double, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e4 + 10;
    const int mod = 1e6;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    int dcmp(double x){
      if(fabs(x) < eps)  return 0;
      if(x > 0)  return 1;
      return -1;
    }
    double sqr(double x){ return x * x; }
    
    struct Point{
      double x, y;
      Point(){ }
      Point(double a, double b) : x(a), y(b) { }
      void input(){
        scanf("%lf %lf", &x, &y);
      }
      friend Point operator + (const Point &a, const Point &b){
        return Point(a.x + b.x, a.y + b.y);
      }
      friend Point operator - (const Point &a, const Point &b){
        return Point(a.x - b.x, a.y - b.y);
      }
      friend bool operator == (const Point &a, const Point &b){
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
      }
      friend Point operator * (const Point &a, const double &b){
        return Point(a.x * b, a.y * b);
      }
      friend Point operator * (const double &b, const Point &a){
        return Point(a.x * b, a.y * b);
      }
      friend Point operator / (const Point &a, const double &b){
        return Point(a.x / b, a.y / b);
      }
      double norm(){
        return sqrt(sqr(x) + sqr(y));
      }
    };
    double cross(const Point &a, const Point &b){
      return a.x * b.y - a.y * b.x;
    }
    struct Circle{
      Point p;
      double r;
      bool operator < (const Circle &o) const{
        if(dcmp(r-o.r) != 0)  return dcmp(r-o.r) == -1;
        if(dcmp(p.x-o.p.x) != 0)  return dcmp(p.x - o.p.x) == -1;
        return dcmp(p.y - o.p.y) == -1;
      }
      bool operator == (const Circle &o) const{
        return dcmp(r - o.r) == 0 && dcmp(p.x - o.p.x) == 0 && dcmp(p.y - o.p.y) == 0;
      }
    };
    Point rotate(const Point &p, double cost, double sint){
      double x = p.x, y = p.y;
      return Point(x*cost - y*sint, x*sint + y*cost);
    }
    
    pair<Point, Point> crossPoint(Point ap, double ar, Point bp, double br){
      double d = (ap - bp).norm();
      double cost = (ar*ar + d*d - br*br) / (2.0*ar*d);
      double sint = sqrt(1.0 - cost*cost);
      Point v = (bp - ap) / (bp - ap).norm() * ar;
      return make_pair(ap+rotate(v, cost, -sint), ap+rotate(v,  cost, sint));
    }
    
    pair<Point, Point> crossPoint(const Circle &a, const Circle &b){
      return crossPoint(a.p, a.r, b.p, b.r);
    }
    Circle c[maxn], tc[maxn];
    #include<complex>
    struct Node{
      Point p;
      double a;
      int d;
      Node(const Point &pp, double aa, int dd) : p(pp), a(aa), d(dd) { }
      bool operator < (const Node &o) const{
        return a < o.a;
      }
    };
    double arg(Point p){
      return arg(complex<double> (p.x, p.y));
    }
    
    double solve(){
      sort(tc, tc + m);
      m = unique(tc, tc + m) - tc;
      n = 0;
      for(int i = m-1; i >= 0; --i){
        bool ok = true;
        for(int j = i+1; j < m; ++j){
          double d = (tc[i].p - tc[j].p).norm();
          if(dcmp(d - abs(tc[i].r - tc[j].r)) <= 0){
            ok = false;  break;
          }
        }
        if(ok)  c[n++] = tc[i];
      }
      double ans = 0.0;
      for(int i = 0; i < n; ++i){
        vector<Node> event;
        Point boundary = c[i].p + Point(-c[i].r, 0);
        event.push_back(Node(boundary, -PI, 0));
        event.push_back(Node(boundary, PI, 0));
        for(int j = 0; j < n; ++j){
          if(i == j)  continue;
          double d = (c[i].p - c[j].p).norm();
          if(dcmp(d - (c[i].r + c[j].r)) < 0){
            pair<Point, Point> ret = crossPoint(c[i], c[j]);
            double x = arg(ret.first - c[i].p);
            double y = arg(ret.second - c[i].p);
            if(dcmp(x - y) > 0){
              event.push_back(Node(ret.first, x, 1));
              event.push_back(Node(boundary, PI, -1));
              event.push_back(Node(boundary, -PI, 1));
              event.push_back(Node(ret.second, y, -1));
            }
            else{
              event.push_back(Node(ret.first, x, 1));
              event.push_back(Node(ret.second, y, -1));
            }
          }
        }
        sort(event.begin(), event.end());
        int sum = event[0].d;
        for(int j = 1; j < event.size(); ++j){
          if(sum == 0){
            ans += cross(event[j-1].p, event[j].p) / 2.0;
            double x = event[j-1].a;
            double y = event[j].a;
            double area = c[i].r * c[i].r * (y-x) / 2.0;
            Point v1 = event[j-1].p - c[i].p;
            Point v2 = event[j].p - c[i].p;
            area -= cross(v1, v2) / 2.0;
            ans += area;
          }
          sum += event[j].d;
        }
      }
      return ans;
    }
    
    int main(){
      while(scanf("%d", &n) == 1){
        m = 0;
        for(int i = 0; i < n; ++i){
          tc[m].p.input();
          scanf("%lf", &tc[m].r);
          if(dcmp(tc[m].r) <= 0)  continue;
          ++m;
        }
        printf("%.3f
    ", solve());
      }
      return 0;
    }
    
  • 相关阅读:
    LINUX下使用crontab进行RMAN备份实验
    cocos2d-x 通过JNI实现c/c++和Android的java层函数互调
    整型与字符型之间转化
    MFC的最大化,最小化,关闭
    [置顶] IT屌丝的离职申请
    The Priest Mathematician
    jQuery入门学习贴
    poj3308Paratroopers(最小割)
    Nginx 开启 debug 日志的办法
    关于产品的一些思考——(四十二)网易之有道云笔记协同版
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6501142.html
Copyright © 2011-2022 走看看