题意:给平面上的 n 个点,找出一个矩形,使得边界上包含尽量多的点。
析:如果暴力那么就是枚举上下边界,左右边界,还得统计个数,时间复杂度太高,所以我们考虑用扫描线来做,枚举上下边界,
然后用其他方法来确定左右边界。我们定义left[i] 表示竖线左边位于上下边界上的点数(不包含在竖线上的点),on[i]表示竖线 i 上的点,
但不包含上下边界上的点,in[i]表示竖线 i 的上的点,但是包含上下边界上的点。那么我们可以递推。最后矩形边界上的点数为
left[i] - left[j] + on[i] + in[j],然后如果右边界 j 确定了,那么要 on[i] - in[i] 最大这个是不断更新 left[i] = left[i-1] + in[i-1] - on[i-1]。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 5; const int mod = 2000; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Point{ int x, y; bool operator < (const Point &p) const{ return x < p.x; } }; Point a[maxn]; int l[maxn], on[maxn], in[maxn], y[maxn]; int solve(){ sort(a, a + n); sort(y, y + n); int ans = 0; m = unique(y, y + n) - y; if(m <= 2) return n; for(int y1 = 0; y1 < m; ++y1) for(int y2 = y1 + 1; y2 < m; ++y2){ int k = 0; for(int i = 0; i < n; ++i){ if(!i || a[i].x != a[i-1].x){ ++k; l[k] = !i ? 0 : l[k-1] + in[k-1] - on[k-1]; on[k] = in[k] = 0; } if(a[i].y > y[y1] && a[i].y < y[y2]) ++on[k]; if(a[i].y >= y[y1] && a[i].y <= y[y2]) ++in[k]; } if(k <= 2) return n; int mmax = 0; for(int i = 1; i <= k; ++i){ ans = max(ans, l[i] + in[i] + mmax); mmax = max(mmax, on[i] - l[i]); } } return ans; } int main(){ int kase = 0; while(scanf("%d", &n) == 1 && n){ for(int i = 0; i < n; ++i){ scanf("%d %d", &a[i].x, &a[i].y); y[i] = a[i].y; } printf("Case %d: %d ", ++kase, solve()); } return 0; }