题意:给定一个无向无环图,要在一些顶点上放灯使得每条边都能被照亮,问灯的最少数,并且被两盏灯照亮边数尽量多。
析:其实就是一个森林,由于是独立的,所以我们可以单独来看每棵树,dp[i][0] 表示不在 i 点放灯,dp[i][1] 表示在 i 点放灯,很简单的一个DP
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1000 + 5; const int mod = 2000; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } bool vis[maxn]; int dp[maxn][2]; vector<int> G[maxn]; void dfs(int u){ vis[u] = true; dp[u][0] = 0; dp[u][1] = mod; for(int i = 0; i < G[u].size(); ++i){ int v = G[u][i]; if(vis[v]) continue; dfs(v); dp[u][0] += dp[v][1] + 1; dp[u][1] += dp[v][0] < dp[v][1] ? dp[v][0] + 1 : dp[v][1]; } } int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); for(int i = 0; i < n; ++i) G[i].clear(); for(int i = 0; i < m; ++i){ int u, v; scanf("%d %d", &u, &v); G[u].push_back(v); G[v].push_back(u); } memset(vis, false, sizeof vis); int ans1 = 0, ans2 = 0; for(int i = 0; i < n; ++i) if(!vis[i]){ dfs(i); ans1 += min(dp[i][0], dp[i][1]) / mod; ans2 += min(dp[i][1], dp[i][0]) % mod; } int ans3 = m - ans2; printf("%d %d %d ", ans1, ans3, ans2); } return 0; }