题意:给定 n 个男人,m 个女人,和 r 个男女之间的关系,每个征募一个人要用10000元,但是如果有关系可以少花一些钱,即10000-亲密度,
求一个最小要花多少钱。
析:最后生成的关系肯定是一片森林,也就是最大权森林,但是我可以把权值取反,然后就是一个求最小森林了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10000 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
struct Node{
int u, v, val;
Node() { }
Node(int uu, int vv, int va) : u(uu), v(vv), val(va) { }
bool operator < (const Node &p) const{
return val < p.val;
}
};
Node a[maxn*5];
int p[maxn*2];
int Find(int x){ return x == p[x] ? x : p[x] = Find(p[x]); }
int solve(int r){
sort(a, a + r);
int ans = 0;
for(int i = 0; i < r; ++i){
int x = Find(a[i].u);
int y = Find(a[i].v);
if(x != y) p[y] = x, ans += a[i].val;
}
return ans;
}
int main(){
int T; cin >> T;
while(T--){
int r;
scanf("%d %d %d", &n, &m, &r);
for(int i = 0; i < n+m; ++i) p[i] = i;
for(int i = 0; i < r; ++i){
int u, v, val;
scanf("%d %d %d", &u, &v, &val);
a[i] = Node(u, v+n, -val);
}
printf("%d
", 10000 * (n+m) + solve(r));
}
return 0;
}