zoukankan      html  css  js  c++  java
  • HDU 1569 方格取数(2) (最小割)

    方格取数(2)

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6806    Accepted Submission(s): 2175


    Problem Description
    给你一个m*n的格子的棋盘,每个格子里面有一个非负数。
    从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大。
     
    Input
    包括多个测试实例,每个测试实例包括2整数m,n和m*n个非负数(m<=50,n<=50)
     
    Output
    对于每个测试实例,输出可能取得的最大的和
     
    Sample Input
    3 3
    75 15 21
    75 15 28
    34 70 5
     
    Sample Output
    188
     
    Author
    ailyanlu
     
    Source
     
    Recommend
    8600
     

    析:很明显的是二分图的最大独立集,但是每个点都有权值,这个可以用最小割来求,建立一个超级源点s,和汇点t,然后s 向 X集,添加容量为权值的边,Y集向 t 添加容量为权值的,然后跑一遍最小割,然后用总权值减去就是答案了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    //#define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 50 * 50 + 20;
    const int maxm = 100 + 10;
    const ULL mod = 10007;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, -1, 0, 1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    struct Edge{
      int from, to, cap, flow;
    };
    
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      bool vis[maxn];
      int d[maxn];
      int cur[maxn];
    
      void init(int n){
        this-> n = n;
        for(int i = 0; i < n; ++i)  G[i].cl;
        edges.cl;
      }
    
      void addEdge(int from, int to, int cap){
        edges.pb((Edge){from, to, cap, 0});
        edges.pb((Edge){to, from, 0, 0});
        m = edges.sz;
        G[from].pb(m-2);
        G[to].pb(m-1);
      }
    
      bool bfs(){
        queue<int> q;
        ms(vis, 0);  d[s] = 0;
        q.push(s);  vis[s] = 1;
        while(!q.empty()){
          int x = q.front();  q.pop();
          for(int i = 0; i < G[x].sz; ++i){
            Edge &e = edges[G[x][i]];
            if(!vis[e.to] && e.cap > e.flow){
              vis[e.to] = 1;
              d[e.to] = d[x] + 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int x, int a){
        if(x == t || a == 0)  return a;
        int flow = 0, f = 0;
        for(int &i = cur[x]; i < G[x].sz; ++i){
          Edge &e = edges[G[x][i]];
          if(d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0){
            e.flow += f;
            edges[G[x][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0)  break;
          }
        }
        return flow;
      }
    
      int maxflow(int s, int t){
        this->s = s;
        this->t = t;
        int flow = 0;
        while(bfs()){ ms(cur, 0);  flow += dfs(s, INF);  }
        return flow;
      }
    };
    Dinic dinic;
    
    int main(){
      while(scanf("%d %d", &n, &m) == 2){
        dinic.init(n * m + 10);
        int s = 0, t = n * m + 5;
        int sum = 0;
        FOR(i, 0, n)  for(int j = 1; j <= m; ++j){
          int x;
          scanf("%d", &x);
          sum += x;
          int now = i * m + j;
          if(i + j & 1){
            dinic.addEdge(s, now, x);
            if(i)  dinic.addEdge(now, now - m, INF);  // up
            if(j > 1)  dinic.addEdge(now, now - 1, INF);  // left
            if(i + 1 < n)  dinic.addEdge(now, now + m, INF); // down
            if(j < m)  dinic.addEdge(now, now + 1, INF); // right
          }
          else dinic.addEdge(now, t, x);
        }
        printf("%d
    ", sum - dinic.maxflow(s, t));
      }
      return 0;
    }
    

      

  • 相关阅读:
    两个进程之间的通讯——pipe 管道
    if if 和 if elif 的区别
    python处理大文件——文件流处理
    DNA甲基化及其测量方法(转)
    windows 服务器安装python及其基本库
    在linux系统个人目录下安装新版python
    python 列表中 [[], [], []] 和 3*[[]]差异
    Python脚本打包为exe文件
    GC偏好的校正与偏好程度的评估
    荧光分子的dynamic quenching 和 通常说的quenching的区别?
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7612677.html
Copyright © 2011-2022 走看看