题意:给定一个图,X表示不能走,O表示必须要走,*表示可走可不走,问你多少种走的法,使得形成一个回路。
析:
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) //#define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 10 + 10; const int maxm = 1e5 + 10; const int mod = 50007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Hash{ int head[mod], next[maxm], sz; LL state[maxm], f[maxm]; void clear(){ sz = 0; ms(head, -1); } void push(LL st, LL ans){ int h = st % mod; for(int i = head[h]; ~i; i = next[i]) if(st == state[i]){ f[i] += ans; return ; } f[sz] = ans; state[sz] = st; next[sz] = head[h]; head[h] = sz++; } }; Hash dp[2]; int isend; // is or not form loop int code[maxn], ch[maxn]; int a[maxn][maxn]; // 1 must go 2 go or not char s[maxn]; void decode(int m, LL st){ for(int i = m; i >= 0; --i){ code[i] = st&7; st >>= 3; } isend = st&1; // the highest bit } LL encode(int m){ LL st = isend; int cnt = 1; ms(ch, -1); ch[0] = 0; for(int i = 0; i <= m; ++i){ if(ch[code[i]] == -1) ch[code[i]] = cnt++; st <<= 3; st |= ch[code[i]]; } return st; } void shift(int m){ for(int i = m; i; --i) code[i] = code[i-1]; code[0] = 0; } void dpblank(int i, int j, int cur){ for(int k = 0; k < dp[cur].sz; ++k){ decode(m, dp[cur].state[k]); int left = code[j-1]; int up = code[j]; if(isend){ // already form loop if(up || left || a[i][j] == 1) continue; code[j] = code[j-1] = 0; if(j == m) shift(m); dp[cur^1].push(encode(m), dp[cur].f[k]); continue; } if(up && left){ if(up == left){ // last grid code[j-1] = code[j] = 0; isend = 1; if(j == m) shift(m); dp[cur^1].push(encode(m), dp[cur].f[k]); } else{ code[j] = code[j-1] = 0; for(int i = 0; i <= m; ++i) if(code[i] == up) code[i] = left; if(j == m) shift(m); dp[cur^1].push(encode(m), dp[cur].f[k]); } } else if(up || left){ int t = max(up, left); if(a[i][j+1]){ code[j] = t; code[j-1] = 0; dp[cur^1].push(encode(m), dp[cur].f[k]); } if(a[i+1][j]){ code[j] = 0; code[j-1] = t; if(j == m) shift(m); dp[cur^1].push(encode(m), dp[cur].f[k]); } } else{ if(a[i+1][j] && a[i][j+1]){ code[j] = code[j-1] = 14; dp[cur^1].push(encode(m), dp[cur].f[k]); } if(a[i][j] == 2){ code[j] = code[j-1] = 0; if(j == m) shift(m); dp[cur^1].push(encode(m), dp[cur].f[k]); } } } } void dpblock(int i, int j, int cur){ for(int k = 0; k < dp[cur].sz; ++k){ decode(m, dp[cur].state[k]); code[j] = code[j-1] = 0; if(j == m) shift(m); dp[cur^1].push(encode(m), dp[cur].f[k]); } } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); ms(a, 0); for(int i = 1; i <= n; ++i){ scanf("%s", s + 1); for(int j = 1; j <= m; ++j){ if(s[j] == 'O') a[i][j] = 1; // must go else if(s[j] == '*') a[i][j] = 2; // not need go } } int cur = 0; dp[cur].cl; dp[cur].push(0, 1); for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j){ dp[cur^1].cl; if(a[i][j]) dpblank(i, j, cur); else dpblock(i, j, cur); cur ^= 1; } LL ans = 0; for(int i = 0; i < dp[cur].sz; ++i) ans += dp[cur].f[i]; printf("Case %d: %I64d ", kase, ans); } return 0; }