zoukankan      html  css  js  c++  java
  • POJ 2396 Budget (有源汇有上下界最大流)

    题意:给定一个矩阵的每行的和和每列的和,以及每个格子的限制,让你求出原矩阵。

    析:把行看成X,列看成Y,其实就是二分图,然后每个X到每个Y边一条边,然后加一个超级源点和汇点分别向X和Y连边,这样就形成了一个有源汇有上下界的网络,如果有最大流,那么这个矩阵就存在。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 250 + 10;
    const int maxm = 1e5 + 10;
    const int mod = 50007;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, -1, 0, 1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    struct Edge{
      int from, to, cap, flow;
    };
    
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      int d[maxn];
      bool vis[maxn];
      int cur[maxn];
    
      void init(int n){
        this-> n = n;
        for(int i = 0; i < n; ++i)  G[i].cl;
        edges.cl;
      }
    
      void addEdge(int from, int to, int cap){
        edges.pb((Edge){from, to, cap, 0});
        edges.pb((Edge){to, from, 0, 0});
        m = edges.sz;
        G[from].pb(m-2);  G[to].pb(m-1);
      }
    
      bool bfs(){
        ms(vis, 0);  vis[s] = 1;
        d[s] = 1;
        queue<int> q;
        q.push(s);
    
        while(!q.empty()){
          int x = q.front();  q.pop();
          for(int i = 0; i < G[x].sz; ++i){
            Edge &e = edges[G[x][i]];
            if(!vis[e.to] && e.cap > e.flow){
              d[e.to] = d[x] + 1;
              vis[e.to] = 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int x, int a){
        if(x == t || a == 0)  return a;
        int flow = 0, f;
        for(int &i = cur[x]; i < G[x].sz; ++i){
          Edge &e = edges[G[x][i]];
          if(d[e.to] == d[x] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0){
            e.flow += f;
            edges[G[x][i]^1].flow -= f;
            a -= f;
            flow += f;
            if(a == 0)  break;
          }
        }
        return flow;
      }
    
      int maxflow(int s, int t){
        this->s = s;  this-> t = t;
        int flow = 0;
        while(bfs()){ ms(cur, 0);  flow += dfs(s, INF); }
        return flow;
      }
    };
    
    Dinic dinic;
    int in[maxn];
    int down[maxn][maxn], up[maxn][maxn];
    bool ok;
    
    void judge(int i, int j, int v){
      if(v < down[i][j] || v > up[i][j])  ok = false;
    }
    
    int main(){
      int T;  cin >> T;
      while(T--){
        scanf("%d %d", &n, &m);
        int s = 0, t = n + m + 1;
        int S = t + 1, T = S + 1;
        FOR(i, 1, S)  FOR(j, 1, S){
          down[i][j] = -1000;
          up[i][j] = 1000;
        }
        ms(in, 0);
        dinic.init(T + 2);
        for(int i = 1; i <= n; ++i){
          int x;  scanf("%d", &x);
          in[s] -= x;  in[i] += x;
          dinic.addEdge(s, i, 0);
        }
        for(int i = 1; i <= m; ++i){
          int x;  scanf("%d", &x);
          in[i+n] -= x;  in[t] += x;
          dinic.addEdge(i+n, t, 0);
        }
        int num;  scanf("%d", &num);
        char op[5];  int u, v, c;
        ok = true;
        while(num--){
          scanf("%d %d %s %d", &u, &v, op, &c);
          if(!ok)  continue;
          if(u && v){
            if(op[0] == '='){  judge(u, v+n, c); up[u][v+n] = down[u][v+n] = c;  }
            else if(op[0] == '<') up[u][v+n] = min(up[u][v+n], c - 1);
            else down[u][v+n] = max(down[u][v+n], c + 1);
          }
          else if(u){
            for(int j = 1; j <= m; ++j){
              if(op[0] == '='){ judge(u, j+n, c); up[u][j+n] = down[u][j+n] = c; }
              else if(op[0] == '<')  up[u][j+n] = min(up[u][j+n], c - 1);
              else  down[u][j+n] = max(down[u][j+n], c + 1);
            }
          }
          else if(v){
            for(int i = 1; i <= n; ++i){
              if(op[0] == '='){ judge(i, v+n, c);  up[i][v+n] = down[i][v+n] = c; }
              else if(op[0] == '<')  up[i][v+n] = min(up[i][v+n], c - 1);
              else down[i][v+n] = max(down[i][v+n], c + 1);
            }
          }
          else{
            for(int i = 1; i <= n; ++i)
              for(int j = 1; j <= m; ++j){
                if(op[0] == '='){ judge(i, j+n, c);  up[i][j+n] = down[i][j+n] = c; }
                else if(op[0] == '<')  up[i][j+n] = min(up[i][j+n], c - 1);
                else down[i][j+n] = max(down[i][j+n], c + 1);
              }
          }
        }
        int ans = 0;
        if(!ok){ puts("IMPOSSIBLE");  goto A; }
        for(int i = 1; i <= n; ++i)
          for(int j = 1; j <= m; ++j){
            if(up[i][j+n] < down[i][j+n]) ok = false;
            dinic.addEdge(i, j+n, up[i][j+n] - down[i][j+n]);
            in[i] -= down[i][j+n];
            in[j+n] += down[i][j+n];
          }
        dinic.addEdge(t, s, INF);
        for(int i = 0; i <= t; ++i){
          if(in[i] > 0)  dinic.addEdge(S, i, in[i]), ans += in[i];
          if(in[i] < 0)  dinic.addEdge(i, T, -in[i]);
        }
        if(!ok || ans != dinic.maxflow(S, T)){ puts("IMPOSSIBLE");  goto A; }
        for(int i = 1; i <= n; ++i){
          int cur = 0;
          for(int j = 0; dinic.edges[dinic.G[i][j]].to != n+1; ++j, cur = j);
          for(int j = cur, cnt = 0; cnt < m; ++cnt, ++j)
            printf("%d%c", dinic.edges[dinic.G[i][j]].flow + down[i][cnt+n+1], " 
    "[cnt+1==m]);
        }
        A:;
        if(T)  puts("");
      }
      return 0;
    }
    

      

  • 相关阅读:
    Android Studio学习笔记(1)
    2019全国大学生电子设计大赛总结
    包与常用模块
    模块
    迭代器、生成器与递归调用
    叠加多个装饰器与有参数的装饰器。
    装饰器
    控制指针的移动、函数
    字符编码
    python 数据类型之列表、元组、字典、集合
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7631645.html
Copyright © 2011-2022 走看看