题意:给定一个字符串,问它的集合中有多少个回文串。
析:dp[i][j] 表示区间 i 到 j,有多少个回文串,
如果 s[i] == s[j] dp[i][j] = dp[i+1][j] + dp[i][j-1] + 1。
否则 dp[i][j] = dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1]。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<LL, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 50; const int maxm = 1e6 + 5; const int mod = 10007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn]; char s[maxn]; int dfs(int i, int j){ if(i > j) return 0; int &ans = dp[i][j]; if(ans) return ans; if(s[i] == s[j]) ans = dfs(i+1, j) + dfs(i, j-1) + 1; else ans = dfs(i+1, j) + dfs(i, j-1) - dfs(i+1, j-1); return ans = (ans + mod) % mod; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%s", s); ms(dp, 0); for(n = 0; s[n]; ++n) dp[n][n] = 1; printf("Case %d: %d ", kase, dfs(0, n - 1)); } return 0; }