zoukankan      html  css  js  c++  java
  • UVa 11167 Monkeys in the Emei Mountain (最大流)

    题意:雪雪是一只猴子。它在每天的 2:00 —— 9:00之间非常渴,所以在这个期间它必须喝掉2个单位的水。它可以多次喝水,只要它喝水的总量是2.它从不多喝,在一小时内他只能喝一个单位的水。所以它喝水的时间段可能是2:00 ——4:00,或者3:00——5:00,或者7:00——9:00.甚至喝两次,第一次2:00——3:00,第二次8:00——9:00.但是它不能在1:00——3:00喝水,因为在1:00时它不渴,也不能在8:00——10:00喝水,因为9:00必须结束。一共有n(n <= 100)只这样的猴子。我们用一个(v,a,b)(0 <= v,a,b <= 50000,a < b,v <= b - a)来描述一个在时间a~b之间口渴,并且必须在这个期间喝够v个单位水的猴子。所有猴子喝水的速度都是1小时喝1个单位的水。现在的问题是只有一个地方可以让m只猴子同时喝水,需要作出一个能满足所有猴子的喝水需要的安排,问能否给出安排。多解时输出任意一组解即可。

    析:很明显的把每只猴子都看作一个结点,然后把每个时间也是看成一个结点,但是,,,太多了吧,肯定会爆炸的,所以,先把所有的区间进行离散化,然后对每个区间建立结点,在输出解的时候,要注意,把所有的区间进行合并,只要对每个区间都加一个标志,循环标记,每次都加一个段,因为最大流最大的情况就是把整个区间都充满,不会超过。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-3;
    const int maxn = 500 + 10;
    const int maxm = 1e7 + 10;
    const int mod = 1000000007;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, -1, 0, 1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    struct Edge{
      int from, to, cap, flow;
    };
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      int d[maxn];
      bool vis[maxn];
      int cur[maxn];
    
      void init(int n){
        this-> n = n;
        for(int i = 0; i < n; ++i)  G[i].cl;
        edges.cl;
      }
    
      void addEdge(int from, int to, int cap){
        edges.pb((Edge){from, to, cap, 0});
        edges.pb((Edge){to, from, 0, 0});
        m = edges.sz;
        G[from].pb(m - 2);
        G[to].pb(m - 1);
      }
    
      bool bfs(){
        ms(vis, 0);  vis[s] = 1;  d[s] = 0;
        queue<int> q;  q.push(s);
    
        while(!q.empty()){
          int u = q.front();  q.pop();
          for(int i = 0; i < G[u].sz; ++i){
            Edge &e = edges[G[u][i]];
            if(!vis[e.to] && e.cap > e.flow){
              vis[e.to] = 1;
              d[e.to] = d[u] + 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int u, int a){
        if(u == t || a == 0)  return a;
        int flow = 0, f;
        for(int &i = cur[u]; i < G[u].sz; ++i){
          Edge &e = edges[G[u][i]];
          if(d[e.to] == d[u] + 1 && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0){
            e.flow += f;
            edges[G[u][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0)  break;
          }
        }
        return flow;
      }
    
      int maxflow(int s, int t){
        this-> s = s;
        this-> t = t;
        int flow = 0;
        while(bfs()){ ms(cur, 0);  flow += dfs(s, INF); }
        return flow;
      }
    };
    
    Dinic dinic;
    vector<int> val;
    int v[maxn], a[maxn], b[maxn];
    int cnt[maxn];
    
    int getpos(int x){ return lower_bound(val.begin(), val.end(), x) - val.begin(); }
    
    int main(){
      int kase = 0;
      while(scanf("%d", &n) == 1 && n){
        scanf("%d", &m);
        val.cl;  val.pb(-1);
        int sum = 0;
        for(int i = 1; i <= n; ++i){
          scanf("%d %d %d", v+i, a+i, b+i);
          val.pb(a[i]);  val.pb(b[i]);
          sum += v[i];
        }
        sort(val.begin(), val.end());
        val.resize(unique(val.begin(), val.end()) - val.begin());
        int len = val.sz;
        int s = 0, t = len + n + 3;
        dinic.init(t + 5);
        for(int i = 1; i <= n; ++i){
          dinic.addEdge(s, len+i, v[i]);
          int l = getpos(a[i]);
          int r = getpos(b[i]);
          for(int j = l; j < r; ++j)  dinic.addEdge(len+i, j, val[j+1]-val[j]);
        }
        for(int j = 1; j + 1 < len; ++j)  dinic.addEdge(j, t, (val[j+1]-val[j])*m);
        if(sum != dinic.maxflow(s, t))  printf("Case %d: No
    ", ++kase);
        else{
          printf("Case %d: Yes
    ", ++kase);
          for(int i = 0; i < len; ++i)  cnt[i] = val[i];
          for(int i = 1; i <= n; ++i){
            vector<P> ans;
            for(int j = 0; j < dinic.G[i+len].sz && v[i]; ++j){
              Edge &e = dinic.edges[dinic.G[i+len][j]];
              if(e.from != i + len)  continue;
              int x = dinic.edges[dinic.G[i+len][j]^1].flow;
              if(x >= 0)  continue;
              x = -x;  v[i] -= x;
              if(val[e.to] + x < val[e.to+1]){
                if(x + cnt[e.to] <= val[e.to+1]){
                  ans.push_back(P(cnt[e.to], cnt[e.to] + x));
                  cnt[e.to] += x;
                  if(cnt[e.to] == val[e.to+1])  cnt[e.to] = val[e.to];
                }
                else{
                  x -= val[e.to+1] - cnt[e.to];
                  ans.push_back(P(cnt[e.to], val[e.to+1]));
                  cnt[e.to] = val[e.to] + x;
                  ans.push_back(P(val[e.to], cnt[e.to]));
                }
              }
              else  ans.push_back(P(val[e.to], val[e.to+1]));
            }
            sort(ans.begin(), ans.end());
            for(int j = 0; j + 1 < ans.sz; ){
              if(ans[j].se == ans[j+1].fi)  ans[j].se = ans[j+1].se, ans.erase(ans.begin()+j+1);
              else ++j;
            }
            printf("%d", ans.sz);
            for(int j = 0; j < ans.sz; ++j)  printf(" (%d,%d)", ans[j].fi, ans[j].se);
            printf("
    ");
          }
        }
      }
      return 0;
    }
    

      

  • 相关阅读:
    工厂模式--工厂方法模式(Factory Method Pattern)
    工厂模式--简单工厂模式( Simple Factory Pattern )
    blog2.0--Springboot添加redis缓存(注解方式)
    blog2.0--JSR303参数校验+全局异常处理器
    高并发秒杀——SpringBoot集成redis
    SpringBoot报错HHH000206: hibernate.properties not found
    blog2.0--保存博客文章到本地磁盘
    Swagger注解 传参
    设计模式--单例模式
    跳表
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7760934.html
Copyright © 2011-2022 走看看