3110: [Zjoi2013]K大数查询
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9489 Solved: 2805
[Submit][Status][Discuss]
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
1
2
1
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1
的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是
1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3
大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
Source
析:第一维用权值线段树,也就是来维护每个值,由于是有负数,所以,要多一开倍,询问的是第 k 大,可以把每个值c,都变成 n - c + 1,这样查询的时候就是第 k 小了,然后第二维用区间线段树,维护一个区间,用快速给一些区间加1操作,这样,就可以直接来查询某个区间的第 k 小了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-3;
const int maxn = 1e5 + 10;
const int maxm = (100000 << 8) + 10;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
int root[maxn<<2], tot, lc[maxm], rc[maxm];
unsigned int sum[maxm], addv[maxm];
void push_up(int rt){
sum[rt] = sum[lc[rt]] + sum[rc[rt]];
}
void push_down(int rt, int len){
if(!lc[rt]) lc[rt] = ++tot; // note
if(!rc[rt]) rc[rt] = ++tot; // note
sum[lc[rt]] += (LL)(len - (len>>1)) * addv[rt];
sum[rc[rt]] += (LL)(len >> 1) * addv[rt];
addv[lc[rt]] += addv[rt];
addv[rc[rt]] += addv[rt];
addv[rt] = 0;
}
void update(int L, int R, int l, int r, int &rt){
if(!rt) rt = ++tot;
if(L <= l && r <= R){
sum[rt] += r - l + 1;
++addv[rt];
return ;
}
if(addv[rt]) pd(rt, r - l + 1);
int m = l + r >> 1;
if(L <= m) update(L, R, l, m, lc[rt]);
if(R > m) update(L, R, m+1, r, rc[rt]);
pu(rt);
}
void update(int L, int R, int k){
int l = 1, r = n<<1, rt = 1;
while(l < r){
int m = l + r >> 1;
update(L, R, 1, n, root[rt]);
if(k <= m) rt <<= 1, r = m;
else rt = rt<<1|1, l = m + 1;
}
update(L, R, 1, n, root[rt]);
}
unsigned int query(int L, int R, int l, int r, int rt){
if(L <= l && r <= R) return sum[rt];
if(addv[rt]) pd(rt, r - l + 1);
int m = l + r >> 1;
unsigned int ans = 0;
if(L <= m) ans = query(L, R, l, m, lc[rt]);
if(R > m) ans += query(L, R, m+1, r, rc[rt]);
return ans;
}
int query(int L, int R, int k){
int l = 1, r = n<<1, rt = 1;
unsigned int tmp;
while(l < r){
int m = l + r >> 1;
if((tmp = query(L, R, 1, n, root[rt<<1])) >= k) rt <<= 1, r = m;
else rt = rt<<1|1, l = m + 1, k -= tmp;
}
return l;
}
int main(){
scanf("%d %d", &n, &m);
int op, l, r, k;
while(m--){
scanf("%d %d %d %d", &op, &l, &r, &k);
if(op == 1) update(l, r, n - k + 1);
else printf("%d
", n - query(l, r, k) + 1);
}
return 0;
}
整体二分,跑的真是快:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-3;
const int maxn = 1e5 + 40;
const int maxm = (100000 << 8) + 10;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
int a[maxn], b[maxn], s[maxn];
void add(int x, int c){
for(int i = x; i <= (n<<1); i += i&-i) a[i] += c, b[i] += c * (x-1);
}
LL query(int x){
int t0 = 0; LL t1 = 0;
for(int i = x; i; i -= -i&i) t0 += a[i], t1 += b[i];
return 1LL * x * t0 - t1;
}
struct Query{
int ty, l, r, id, k;
};
Query q[maxn], q1[maxn], q2[maxn];
int ans[maxn];
void dfs(int fro, int rear, int l, int r){
if(l > r || fro > rear) return ;
if(l == r){
for(int i = fro; i <= rear; ++i)
if(q[i].id != -1) ans[q[i].id] = n - l + 1;
return ;
}
int m = l + r >> 1;
int lx = 0, rx = 0;
for(int i = fro; i <= rear; ++i){
if(q[i].ty == 1){
if(q[i].k <= m){
add(q[i].l, 1);
add(q[i].r+1, -1);
q1[lx++] = q[i];
}
else q2[rx++] = q[i];
}
else{
LL t = query(q[i].r) - query(q[i].l-1);
if(t >= q[i].k) q1[lx++] = q[i];
else q[i].k -= t, q2[rx++] = q[i];
}
}
for(int i = fro; i <= rear; ++i)
if(q[i].ty == 1 && q[i].k <= m){
add(q[i].l, -1); add(q[i].r+1, 1);
}
for(int i = fro, j = 0; j < lx; ++j, ++i) q[i] = q1[j];
for(int i = lx+fro, j = 0; j < rx; ++j, ++i) q[i] = q2[j];
dfs(fro, fro + lx - 1, l, m);
dfs(fro + lx, rear, m+1, r);
}
int main(){
scanf("%d %d", &n, &m);
int idx = 0;
for(int i = 0; i < m; ++i){
scanf("%d %d %d %d", &q[i].ty, &q[i].l, &q[i].r, &q[i].k);
if(q[i].ty == 1){
q[i].k = n - q[i].k + 1;
q[i].id = -1;
}
else q[i].id = idx++;
}
dfs(0, m-1, 0, (n<<1)+2);
for(int i = 0; i < idx; ++i) printf("%d
", ans[i]);
return 0;
}