1024: [SCOI2009]生日快乐
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3025 Solved: 2201
[Submit][Status][Discuss]
Description
windy的生日到了,为了庆祝生日,他的朋友们帮他买了一个边长分别为 X 和 Y 的矩形蛋糕。现在包括windy
,一共有 N 个人来分这块大蛋糕,要求每个人必须获得相同面积的蛋糕。windy主刀,每一切只能平行于一块蛋糕
的一边(任意一边),并且必须把这块蛋糕切成两块。这样,要切成 N 块蛋糕,windy必须切 N-1 次。为了使得
每块蛋糕看起来漂亮,我们要求 N块蛋糕的长边与短边的比值的最大值最小。你能帮助windy求出这个比值么?
Input
包含三个整数,X Y N。1 <= X,Y <= 10000 ; 1 <= N <= 10
Output
包含一个浮点数,保留6位小数。
Sample Input
5 5 5
Sample Output
1.800000
HINT
Source
析:竟然是一个搜索题,我都想成二分。。。,但是没想到有什么好的办法来实现判定。
搜索,对每次切的位置都搜索,因为 n 比较小,所以是完全可以的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 400 + 10; const int maxm = 3e5 + 10; const ULL mod = 3; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } double dfs(double r, double c, int n){ if(n == 1) return max(r, c) / min(r, c); double rx = r / n, cx = c / n; double ans = inf; for(int i = 1; i <= n / 2; ++i){ ans = min(ans, max(dfs(rx * i, c, i), dfs(r - rx * i, c, n - i))); ans = min(ans, max(dfs(r, cx * i, i), dfs(r, c - cx * i, n - i))); } return ans; } int main(){ int K; scanf("%d %d %d", &n, &m, &K); printf("%.6f ", dfs(n, m, K)); return 0; }